Comprehensive Listing of SPRUCE Project Ongoing and Planned Measurements ## 15 April 2015 Core task measurements are listed first ahead of collaborator activities. Future measurements that have not yet commenced are in blue text. ### **Table of Contents** | SPRUCE Core Project Measurements | 4 | |--|----| | Environmental Measurements - Hanson et al | 5 | | Photographic Records - Hanson et al | 6 | | Ecosystem Carbon Cycle and Vascular Plant Growth Observations - Hanson et al | 7 | | SPRUCE Multi-Scale Mass and Energy Fluxes - Gu | 9 | | Plant Community Dynamics in Response to Warming and CO ₂ - Palik | 10 | | Root and rhizosphere dynamics - Iversen et al | | | Woody Plant Physiology and Water Relations - Warren et al | 14 | | Sphagnum Growth and N Cycling - Norby et al | | | Sphagnum Physiology and Water Relations - Weston et al | 18 | | Microbial Community Composition and Enzyme Activity - Schadt et al | 19 | | Litter Decomposition - Griffiths and Kolka | 21 | | Hydrology and PoreWater Biogeochemistry - Griffiths and Sebestyen | 23 | | SPRUCE Collaborator Data Sets | 29 | | List of Collaborator Projects | 30 | | Response of Belowground C Stocks to Climate Change - Kostka and Chanton | 34 | | Understanding the mechanisms underlying heterotrophic CO2 and CH4 fluxes in a peatland with deep soil warming and | | | atmospheric CO2 enrichment - Bridgham et al | | | Mercury and Sulfur Dynamics in the SPRUCE Experiment - Toner et al. | | | Improving models to predict phenological responses to global change - Richardson and Johnston | 40 | | Long term responses of nonstructural carbon to elevated CO ₂ and temperature in boreal peatland bog forest vegetation - | | | Furze et al | | | Lichen community responses to warming - McCune et al | | | Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate | | | change - Lilleskov | | | Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models? - Hofmockel and Hobbie | | | Peatland Mercury Cycling in a Changing Climate: A Large-Scale Field Manipulation Study - Mitchell et al | | | Effects of experimental warming & elevated CO2 on trace gas emissions from a northern Minnesota black spruce peatland: | | | measurement and modeling - Finzi | 53 | | ¹⁴ C, ¹³ C, and ² H of surface CO ₂ and CH ₄ fluxes, canopy air/local atmosphere; ¹⁴ C-DOC; ¹³ C and ¹⁵ N Chip-SIP of | | |---|----| | methanogens/trophs; ebullition history reconstruction with porewater noble gas profiles - McFarlane et al | 54 | | Using microbial enzyme decomposition models to study the effects of peat warming and/or CO2 enrichment on peatland | | | decomposition - Hill et al | 55 | | Soil fauna biodiversity sampling at SPRUCE - Lindo | | | Monitoring warming and elevated CO2 induced changes in photosynthetic efficiency via canopy spectral reflectance - | | | Falkowski et al | 58 | | Wood decomposition rates and functional types in a shifting climate - Schilling et alet al | 59 | | Microbial growth and carbon use partitioning under peatland warming and elevated CO ₂ - Gutknecht et al | | # **SPRUCE Core Project Measurements** | SPRUCE CORE
TASKS | | | Environmenta | l Measurements – Hanso | n et al. | | | | |---|-----------------------------------|---------------------------------|---------------------------|---|-----------------------|-------------------------------|--|--| | Principal
Contact: | Paul J. Hanson; hansonpj@ornl.gov | | | | | | | | | Co-
Investigators: | | Jeff Riggs | , Robert Nettles, Steve | e Sebestyen (WT), Natalie Gr
(Peat WC) | iffiths (WT) | , Jeff Warren | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | S1-Bog
Environmental Data | Paul J.
Hanson | 2010 to date | EM1, EM2, EM3 | Various measurements (30-
minute data), not all will continue
indefinitely due to the addition of
SPRUCE plot environmental data | Data | Level-0
Level-1
Level-2 | | | | SPRUCE Plot
Environmental Data
Deep Peat Heating | Paul J.
Hanson | June 2014
to
June 2015 | Constructed plots 4 to 21 | TA/RH (0.5, 1,2E,2W,4 m) TS (9 depths) TH (3 elevations) WT (plot center) WPeat (hummock,shallow) PAR (2.5 m) Rain (6m) Wind (2D above chamber) | Data | Level-0
Level-1
Level-2 | | | | SPRUCE Plot
Environmental Data
Whole-Ecosystem
Warming | Paul J.
Hanson | June 2015
into the
future | Constructed plots 4 to 21 | TA/RH (0.5, 1,2E,2W,4 m) TS (9 depths) TH (3 elevations) WT (plot center) WPeat (hummock,shallow) PAR (2.5 m) Rain (6m) Wind (2D above chamber) | Data | Planned | | | ^{*}Abbreviations: (TA is air temperature, RH is relative humidity, TS is soil temperature, TH is hummock temperature, WT is water table, WPeat is water content of peat, PAR is photosynthetically active radiation, Rain is rainfall, Wind is windspeed. | SPRUCE CORE
TASKS | | Photographic Records – Hanson et al. | | | | | | | | | |--------------------------|--------------------|---|---|---|-----------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | Paul J. Hanson; hansonpj@ornl.gov | | | | | | | | | | Co-
Investigators: | | Jeff Riggs, Robert Nettles, Les Hook, Todd Ontl | | | | | | | | | | Measurements | Primary
Contact | Sample
periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | Phenology
Photographs | Les Hook | 2011 to date | EM Site | Tree view – 9AM and 12PM
Shrub view – 9AM and 12 PM
Instrument view – 12 PM | Photos | Level-0
Level-1
Level-2 | | | | | | Phenology Movies | Paul J.
Hanson | 2010 to date | EM Site | Tree view – 9AM and 12PM
Shrub view – 9AM and 12 PM
Instrument view – 12 PM | Compiled
Movies | Level-0
Level-1
Level-2 | | | | | | Aerial Photographs | Paul J.
Hanson | Periodic
since 2009 | S1-Bog and SPRUCE
site, Some other Marcell
Forest Locations | Downward looking images and
side looking Public Relations
photos | Photos | Level-0
Level-1
Level-2 | | | | | | SPRUCE CORE
TASKS | Ecosyst | Ecosystem Carbon Cycle and Vascular Plant Growth Observations – Hanson et al. | | | | | | | | | |--|--------------------|---|--|--|-------------------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | Paul J. Hanson; hansonpj@ornl.gov | | | | | | | | | | Co-
Investigators: | Jana Phil | Jana Phillips, Deanne Brice, Les Hook, Colleen Iversen, Rich Norby and other SPRUCE Project Staff | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | S1-Bog Survey | Paul J.
Hanson | Sep 2009 | 20 x 20 m grid across
the S1-Bog | Peat Depths, Tree diameters, shrub cover | Data Only | Level-0
Level-1
Level-2 | | | | | | Tree Allometric data | Paul J.
Hanson | Summers of 2010 & 2011 | Trees sampled from the south end of the S1-Bog | Tree DBH and various tree dimensional measurements including mass | Data Only | Level-0
Level-1
Level-2 | | | | | | Shrub Allometric
Data | Paul J.
Hanson | Summers of 2010 &2011 | Shrubs sampled from the S1-Bog | Various dimensional measurements and | Data Only | Level-0
Level-1
Level-2 | | | | | | Tree Growth | Paul J.
Hanson | Feb/Mar
Annually | Plots 1 to 28 | DBH, Height in some years | Data Only | Level-0
Level-1
Level-2 | | | | | | 0.25 m ² NPP PLots | Paul J.
Hanson | Early August
Annually | All constructed boardwalk plots | Shrub and forb | Tissues
from some
years | Level-0
Level-1
Level-2 | | | | | | Peat Elevations | Paul J.
Hanson | 2x annually
May - Aug | 2 locations within all constructed boardwalk plots | Multiple microtransects of peat surface elevations from two permanent stands. | Data only | Level-0
Level-1
Level-2 | | | | | | Net CO ₂ x CH ₄ Flux | Paul J.
Hanson | Nominally
monthly
since 2011,
less in
winter | 2011 & 2012 – x2
2013 & 2014 – x16 | Large collar CO₂, CH₄ flux under light and dark daytime conditions; Also initial H₂O flux in the light | No | Level-0
Level-1
Level-2 | | | | | | Peat Sampling | Paul J.
Hanson | August 2012 | All constructed plots 4 to 21 | Peat cores by depth analyzed for a wide range of characteristics including C, N, bulk density, elements, etc. (see archive) Add DOI? | Data and
sample
archive | Level-0
Level-1
Level-2 | |---|-----------------------|-----------------------------------|---|---|-------------------------------|-------------------------------| | Peat ¹⁴ C and ¹³ C | Karis J.
McFarlane |
August 2012 | All constructed plots 4 to 21 | Peat cores by depth analyzed for 14C, 13C, and calibrated peat age | Data and ?? | Level-0
Level-1
Level-2 | | Peat ¹⁵ N and ¹³ C
and C and N | Erik
Hobbie | August 2012 | All constructed plots 4 to 21 | Peat cores by depth analyzed for ¹⁵ N, ¹³ C, C and N. C-N ratio calculated. | Data and ?? | Level-0
Level-1
Level-2 | | Plot Vegetation
Sampling | Paul J.
Hanson | August
2012,
Summer
2013 | All constructed plots 4 to 21 | Current and older foliage for key plant species and <i>Sphagnum</i> mosses (2013) | <mark>??</mark> | Level-0
Level-1
Level-2 | | Auto-dendrometer
Bands | Paul J.
Hanson | Starting in 2015 | SPRUCE Plots 4, 6, 7, 8, 10, 11, 16, 17, 19, 20, 21 | Automated dendrometer Bands
2 perhaps 3 trees per plot | Data | Planned | | | | | | | | | | SPRUCE CORE
TASKS | | SPRUCE Multi-Scale Mass and Energy Fluxes – Gu | | | | | | | | | |------------------------------------|--------------------|--|--------------------|--------------------------|-----------------------|------------------------|--|--|--|--| | Principal
Contact: | | Lianhong Gu; Lianhong-gu@ornl.gov | | | | | | | | | | Co-
Investigators: | | | | | | | | | | | | Measurements | Primary
Contact | Sample
periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | Shrub-level EC | Lianhong
Gu | Future | Untreated location | Half-hourly, long-term | Data | Planned | | | | | | Plot-level Flux | Lianhong
Gu | Future | Treated/Untreated | Exploratory | Data | Planned | | | | | | Intact <i>Picea</i>
Peatland EC | Lianhong
Gu | Future | Untreated location | Half-hourly, long-term | Data | Planned | | | | | | Sun-induced fluorescence | Lianhong
Gu | Future | Treated/Untreated | Exploratory to long-term | Data | Planned | | | | | | SPRUCE CORE
TASKS | Р | lant Comm | nunity Dynamics in | Response to Warming a | nd CO ₂ - I | Palik | |--|--------------------|---|---|--|--|-------------------------------| | Principal
Contact: | | | Brian Palik | ; bpalik@fs.fed.us | | | | Co-
Investigators: | | R | Rebecca Montgome | ery, University of Minnes | ota | | | Measurements | Primary
Contact | Sample
periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | Ground layer plant community monitoring | Brian Palik | June and
August 2014 | Three 1 × 2 m plots within each SPRUCE chamber footprint, both treated and controls | presence/absence
within 50 quadrats within each 1 ×
2 m plot | Data | Level-0
Level-1
Level-2 | | Seed dispersion into the SPRUCE study site | Brian Palik | 2013, 2014 | Seed traps located adjacent to most chamber footprints | Seed | Stored
dried in,
Grand
Rapids | Level-0
Level-1
Level-2 | | PAR relationship to shrub cover | Brian Palik | 2013 | Selected plots outside of chamber footprints | PAR at ground level under
varying levels of shrub cover
within plots | Data | Level-0
Level-1
Level-2 | | Preliminary ground
layer plant
community
monitoring | Brian Palik | Summer
2012-13 | 1 m ² plots located adjacent to chamber footprints | Plant cover estimates | Data | Level-0
Level-1
Level-2 | | Ground Layer plant community monitoring | Brian Palik | June and
August each
year of
study | Three 1 × 2 m plots within each SPRUCE chamber footprint, both treated and controls | presence/absence
within 50 quadrats within each 1 ×
2 m plot | Data | Planned | | Seed dispersion into
the SPRUCE study
site | Brian Palik | Each year of study | One seed trap within each 1 × 2 m vegetation plot | seed | Data and physical samples | Planned | | SPRUCE CORE
TASKS | Root and rhizosphere dynamics – Iversen et al. | | | | | | | | | | |--|--|---|--|-----------------------|-----------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | Colleen M. Iversen; <u>iversencm@ornl.gov</u> | | | | | | | | | | Co-
Investigators: | Joanne Childs, Rich Norby, Todd Ontl, Randy Kolka, Deanne Brice, Karis
McFarlane, Paul Hanson | | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | Root standing crop,
production,
phenology, mortality
(trees and shrubs,
hummocks and
hollows to ~-80 cm
depth) | Colleen
Iversen | July, 2010 to
September,
2012 | Sound end of S1 bog (n = 12, six locations with hummock-hollow in each location) and north end of S1 bog near FS well (n = 12, six locations with hummock-hollow in each location) | Minirhizotrons | Images | Level-0
Level-1
Level-2 | | | | | | Spruce tree basal area increment | Colleen
Iversen | May, 2011
to October,
2011 | North end of S1 bog
near FS well (n = 8
trees) | Automated dendrobands | Data | Level-0
Level-1
Level-2 | | | | | | Spruce tree basal area increment | Colleen
Iversen | May, 2012
to
September,
2012 | North end of S1 bog
near FS well (separate
set of trees, <i>n</i> = 8 trees) | Manual dendrobands | Data | Level-0
Level-1
Level-2 | | | | | | Root morphology,
C/N | Colleen
Iversen | May, 2011 | South end of bog | Voucher specimens | Ground roots | Level-0
Level-1
Level-2 | | | | | | New root morphology, C/N, depth distribution (spruce, larch, shrubs, hummocks to -10 cm and hollows to -30 cm) | Colleen
Iversen | June, 2013
to June,
2014
(summer,
winter) | South end of S1 bog (n = 12, six locations with hummock-hollow in each location, adjacent to minirhizotrons) | Ingrowth cores | Ground
roots | Level-0
Level-1
Level-2 | | | | | | Plant-available
NH ₄ +, NO ₃ -, PO ₄ -
with soil depth
(hummocks and
hollows) | Colleen
Iversen | May, 2011
to July, 2012
(bi-weekly
collection) | Sound end of S1 bog (n
= 9 access tubes, three
at -10 cm, three at -30
cm, three at -60 cm) | Ion-exchange resins | Data | Level-0
Level-1
Level-2 | |---|--------------------|---|---|--------------------------|-----------------|-------------------------------| | Root standing crop,
production,
phenology, mortality
(trees and shrubs,
hummocks and
hollows ~-80 cm
depth) | Colleen
Iversen | October,
2012 to
current | SPRUCE experimental plots (n = 4 per plot, two locations with hummockhollow in each location) Plots 4, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 21 | Minirhizotrons | Images | Level-0
Level-1
Level-2 | | Root and hyphal standing crop, production, phenology, mortality (trees and shrubs, hummocks only to ~-50 cm depth) | Colleen
Iversen | October,
2012 to
current | SPRUCE experimental plots (n = 1 per plot in a hummock) Plots 4, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 21 | Automated minirhizotrons | Images | Level-0
Level-1
Level-2 | | New root morphology, C/N, depth distribution (spruce, larch, shrubs, hummocks to -10 cm and hollows to -30 cm) | Colleen
Iversen | June, 2014
to current
(summer,
winter) | SPRUCE experimental plots (n = 4 tubes per plot, 2 tubes in two locations in hummock-hollow) Plots 4, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 21 | Ingrowth cores | Ground
roots | Level-0
Level-1
Level-2 | | Root morphology,
standing stock,
depth distribution,
C/N, 14C (spruce,
larch, shrubs,
hummocks and
hollows) | Colleen
Iversen | August,
2012 | All SPRUCE plots with boardwalks (<i>n</i> = 16, hummock-hollow, treed, non-treed for transect 1) Plots 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21 | Biomass cores | Ground
roots | Level-0
Level-1
Level-2 | | Plant-available
NH ₄ +, NO ₃ -, PO ₄ -
with soil depth
(hummocks and
hollows) | Colleen
Iversen | June, 2013
to current
(monthly
collection) | SPRUCE experimental plots (n = 12 tubes per plot, two locations with 6 tubes distributed across hummock-hollow surface) Plots 4, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 21 | Ion-exchange resins | Data | Level-0
Level-1
Level-2 | |--|--------------------|---|--|---------------------|------|--------------------------------------| | | | | | | | | | SPRUCE CORE
TASKS | | Woody | Plant Physiology a | and Water Relations – Wa | rren et al | • | |---|--------------------|----------------------|--------------------
---|------------------------------|-------------------------------| | Principal
Contact: | | | Jeffrey M War | ren; warrenjm@ornl.gov | | | | Co-
Investigators: | Anna J | lensen, Sta | • ' | Joanne Childs; Deanne Br
roject Staff | rice; other | SPRUCE | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | Picea mariana
(spruce)
Gas exchange, C:N,
LMA | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Amax, gs, Jmax, Vcmax, Rd, N
and LMA for <u>Spruce</u> foliage –
mainly 1 st , 2 nd cohorts
T, CO ₂ , Light response curves
seasonally | Yes, dry
leaf and
data | Level-0
Level-1
Level-2 | | Larix laricina
(larch,tamarack)
Gas exchange, C:N,
LMA | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Amax, gs, Jmax, Vcmax, Rd, N
and LMA for <u>Larch</u> foliage –
mainly 1 st cohort
T, CO ₂ , Light response curves
seasonally | Yes, dry
leaf and
data | Level-0
Level-1
Level-2 | | Shrub Species
Gas exchange, C:N,
LMA | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Amax, gs, Jmax, Vcmax, Rd, N and LMA for <u>Chamaedaphne and Ledum</u> foliage T, CO ₂ , Light response curves seasonally | Yes, dry
leaf and
data | Level-0
Level-1
Level-2 | | Other vascular
species
Gas exchange, C:N,
LMA | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Limited Amax, gs, Jmax, Vcmax, Rd, N and LMA for other vascular species seasonally | Yes, dry
leaf and
data | Level-0
Level-1
Level-2 | | Gas exchange | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Limited (all species) twig respiration | Data only | Level-0
Level-1
Level-2 | | Leaf water potential | Jeffrey
Warren | May-Oct
2010-2014 | Across S1
bog | Predawn, midday and diurnal
measurements for all vascular
species (limited for lily) | Data only | Level-0
Level-1
Level-2 | |---|-------------------|--|---|--|--------------------------|-------------------------------| | Non-structural carbohydrates | Jeffrey
Warren | Seasonal
2013-2014 | Along each
Transect | Root, branch, foliage spruce,
larch and shrubs | Yes, dry
tissue, data | Level-0
Level-1
Level-2 | | Sap flow | Jeffrey
Warren | Seasonal
2010-2014 | S End near EM1 | Sap flux density for spruce and larch | Data only | Level-0
Level-1
Level-2 | | Pressure Volume
curves, leaf
hydraulic
conductivity | Jeffrey
Warren | July,Sept
2011-2013 | Across S1
bog | Spruce and larch pressure-
volume curves and Kleaf | Data only | Level-0
Level-1
Level-2 | | Root PLC | Jeffrey
Warren | 2011-2013 | S End near EM1 | <u>Limited</u> data from spruce and larch roots – sapflow calibration trees | Data only | Level-0
Level-1
Level-2 | | Sapwood depth | Jeffrey
Warren | 2010-2014 | Across S1
bog | Spruce and Larch stems @ ~1m | Data only | Level-0
Level-1
Level-2 | | Tree sap flow | Jeffrey
Warren | Varies - Annually or every 2 years | 0-6 sensors
per
treatment
plot | Sap flux
density in
larch or spruce
(> 5 cm dbh) | Data only | Planned | | Leaf water potential | Jeffrey
Warren | Seasonal annually | From all treatment plots | Predawn, midday and diurnal measurements for all vascular species | Data only | Planned | | Non-structural carbohydrates, leaf water potential, physiology, anatomy, conductivity | Jeffrey
Warren | During
extreme
weather
events | From targeted treatment plots | Varies - Branch and foliage from spruce, larch and shrubs | Planned | Planned | | Foliar morphology | Jeffrey
Warren | Seasonal annually | From all treatment plots | Branch foliage leaf mass per unit area (LMA), C:N, anatomy | Planned | Planned | | Foliar phenolics | Jeffrey
Warren | Seasonal
Annually | From all treatment plots | Varies - foliage tissue from spruce, larch and shrubs | Planned | Planned | |-----------------------|-------------------|----------------------|---------------------------------------|--|---------|---------| | Branch
PLC/anatomy | Jeffrey
Warren | Periodically | From all treatment plots | Xylem vulnerability to embolism curves hydraulic anatomy of spruce, larch and shrubs | Planned | Planned | | Soil water content | Jeffrey
Warren | Automated | 3 pairs of sensors per treatment plot | Hummock volumetric soil water content from bottom of hummock and mid hummock | Planned | Planned | | SPRUCE CORE
TASKS | | Sphagnum Growth and N Cycling – Norby et al. Richard J. Norby; norbyrj@ornl.gov | | | | | | | | | |-------------------------------|--------------------|--|---|-------------------------------|------------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | | | | | | | | | | | Co-
Investigators: | | Joanne Childs, David Weston | | | | | | | | | | Measurements | Primary
Contact | Sample Lyne | | Archival
Material? | Data Archive
Status | | | | | | | Sphagnum mosses growth | Rich Norby | May and
October
Annually | All constructed plots: 4, 6, 8, 10, 11, 13, 16, 17, 19, 20 | Brush wire and bundle methods | Data | Level-0
Level-1
Level-2 | | | | | | Sphagnum community assessment | Rich Norby | Annual in
October | Community Assessments within permanent plots: 4, 6, 8, 10, 11, 13, 16, 17, 19, 20 | <mark>??</mark> | Data | Level-0
Level-1
Level-2 | | | | | | Sphagnum N
Fixation | Rich Norby | | Off plot measurements
until a viable
assessment method is
established | In development | SPRUCE CORE
TASKS | Sphagnum Physiology and Water Relations – Weston et al. | | | | | | | | | |--|---|------------------------------------|--|--|-----------------------|-------------------------------|--|--|--| | Principal
Contact: | | David J. Weston; westondj@ornl.gov | | | | | | | | | Co-
Investigators: | Jeff Warren and other??? SPRUCE Project Staff | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | In vitro physiology assessments | Dave
Weston | All year | lab | A-Ca Response; Temperature
Response, tissue water content
response, N response | Data | Level-0
Level-1
Level-2 | | | | | In situ Sphagnum
moss community
CO₂ Flux | Dave
Weston | April -
November | LiCor 8100 observations adjacent to Plot 14 | CO ₂ flux | Data | Level-0
Level-1
Level-2 | | | | | Sphagnum moss water content | Dave
Weston | April -
November | LiCor 8100 observations adjacent to Plot 14 | Echo probes, tissue water content | Data | Level-0
Level-1
Level-2 | | | | | In vitro Sphagnum – microbiome constructed communities | Dave
Weston | All year | lab | Growth, photosynthesis, N fixation rates | Data | Level-0
Level-1
Level-2 | | | | | Sphagnum monolith water retention curves | Jeffrey
Warren | Periodic | Samples collected along
all transects and
processed at ORNL
or at Decagon | Mid-sample water content vs.
10HS signal
vs. surface <u>Sphagnum</u> water
content/ water potential | Data | Level-0
Level-1
Level-2 | | | | | In situ Sphagnum
moss community
CO₂ Flux | Dave
Weston | April -
November | LiCor 8100 observations in selected plots | CO ₂ flux | Data | Planned | | | | | SPRUCE Core
TASKS | Mi | Microbial Community Composition and Enzyme Activity – Schadt et al. | | | | | | | | | |--|--------------------|---|-----------------------------------|---|-----------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | | Christopher W. S | chadt; schadtcw@ornl.gov | | | | | | | | Co-
Investigators: | | Meg Steinweg, Laurel Kluber | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | Microbial Community Assessments (pre treatment) | Schadt | Seasonally
in 2010 - 12 | EM1&2 Area
Transects 1, 2, & 3 | Frozen Peat (-20C) DNA samples (-20C) QPCR data (rRNA for archaea/bacteria/fungi, as well as mcrA for methanogens) | Yes | Level-0
Level-1
Level-2 | | | | | | Microbial Community enzyme activity (pretreatment) | Schadt | Seasonally in 2010 - 12 | EM1&2 Area
Transects 1, 2, & 3 | Frozen Peat (-20C) Carbon and Nitrogen Cycle panel of 8 enzyme activity measures | Yes | Level-0
Level-1
Level-2 | | | | | | Microbial Community
Assessments (DPH) | Schadt | June and
August 2014 | Heated and Control
Plots | Frozen Peat (-20C & -80C) DNA samples (-20C) QPCR data including rRNA for Archaea/Bacteria/Fungi, as well as
mcrA for methanogens | Yes | Level-0
Level-1
Level-2 | | | | | | Microbial Community
Assessments (DPH) | Schadt | Biweekly,
June – Oct
2014 | Heated and Control
Plots | Frozen Porewater (-20C) (Were going to use for QPCR/rRNA-gene seq, however DNA yields not good) | Yes | Level-0
Level-1
Level-2 | | | | | | Microbial Community
Assessments (DPH) | Schadt | June and
August 2014 | Heated and Control
Plots | Frozen Peat (-80C) DNA samples 16S rRNA-gene (Archaeal/Bacterial) and ITS (Fungal) community sequencing analyses with JGI | Yes | Level-0 Level-1 Level-2 | |--|--------|---------------------------|-----------------------------|--|-----|--------------------------------| | Microbial
Metagenome
Assessments (DPH) | Schadt | August 2014
(4 depths) | Heated and Control
Plots | Frozen Peat (-80C) DNA samples 16S rRNA-gene (Archaeal/Bacterial) and ITS (Fungal) community sequencing analyses with JGI | Yes | Level-0 Level-1 Level-2 | | Incubations | ??? | ??? | ??? | ??? | ??? | ??? | | SPRUCE Core
TASKS | Litter Decomposition – Griffiths and Kolka | | | | | | | | | |---|---|----------------|-------------------------------------|---|-----------------------|--------------------------------|--|--|--| | Principal
Contact: | Natalie Griffiths; griffithsna@ornl.gov; Randy Kolka, rkolka@fs.fed.gov | | | | | | | | | | Co-
Investigators: | Colleen Iversen, Cassandra Ott (moss decomp), Scott Tiegs (cotton-strip decomp) | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | Moss decomposition experiment | N. A.
Griffiths | 2014 – 2017 | South end of S1 and
Bog Lake Fen | Moss decomposition (<i>Sphagnum</i> sp., <i>Polytrichum</i>) in hummocks, hollows, lawns. Litterbags at 0, 1, 3 years. Analyses: mass loss, C, N, P. | Data | Level-0
Level-1
Level-2 | | | | | Main decomposition experiment | N. A.
Griffiths | 2015 – 2025 | 10 expt plots | Decomposition of spruce needles and fine roots, Labrador tea leaves and fine roots, and Sphagnum magellanicum and Sphagnum angustifolium in hummocks and hollows. Litterbags at 0, 0.5, 1, 2, 5, 10 years. Analyses: mass loss, C, N, P, lignin. | Data | Level-0 Level-1 Level-2 | | | | | Cotton-strip
decomposition
experiment | N. A.
Griffiths | 2015 – 2025 | 10 expt plots | Decomposition of 1-m long cotton strip (divided into 10-cm segments for depth-specific decomposition analysis). Yearly deployments to analyze interannual variability. 3 replicates per chamber per year. Tensile loss analysis. | Data | Level-0
Level-1
Level-2 | | | | | Sphagnum/litter mix decomposition experiment | N. A.
Griffiths | 2016– 2025 | 10 expt plots | Decomposition of mixes of Sphagnum with spruce needles or Lab tea leaves. Litterbag retrievals at 0, 1, 2, 5 years. Analysis includes mass loss, C, N, P, lignin. | Data | Level-0
Level-1
Level-2 | |--|--------------------|-----------------|---------------|--|------|-------------------------------| | Decomposition of
aboveground litter
from elevated CO ₂
vs ambient CO ₂
plots | N. A.
Griffiths | ~2018 –
2025 | 10 expt plots | Compare decomposition of aboveground leaf litter grown in elevated CO ₂ plots to litter from ambient plots. Litterbag retrievals at 0, 1, 2, 5 years. Analysis includes mass loss, C, N, P, lignin. | Data | Level-0
Level-1
Level-2 | | | | | | | | | | SPRUCE Core TASKS | Hydrology and PoreWater Biogeochemistry – Griffiths and Sebestyen | | | | | | | | |--|---|--|----------------------------------|--|---|-------------------------------|--|--| | Principal Contact: | Natalie | Natalie Griffiths (griffithsna@ornl.gov), Steve Sebestyen (ssebestyen@fs.fed.us) | | | | | | | | Co-Investigators: | | Kieth Oleheiser (keithcoleheiser.fs.fed.us) | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot
Locations | Sample Type | Archival
Material? | Data
Archive
Status | | | | SPRUCE depth-specific porewater chemistry | | 2013 –
present | S1 plots | Unfiltered water sample from 1 nest of depth-specific piezometers per plot. Sampling was weekly/biweekly in 2013 and biweekly (10 expt chambers) or monthly (other plots) in 2014. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | | | | S1 depth-specific porewater
chemistry (Test 1-6
piezometers) | | 2011 –
present | South end of
S1 (near
EM1) | Unfiltered water sample from one nest of depth-specific samplers Test 1-6 (0 – 3 m depth) and EM1 (0 m) sampled weekly or monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. Samples – Yes but will be discarded soon | Level-0
Level-1
Level-2 | | | | S1 depth-specific porewater chemistry (other south end piezometers) | 2011 –
2013 | South end of
S1 (near
EM1) | Unfiltered water sample from a variety of depth-specific samplers (Test 7-10, 29-34, Test 36-41) 0 – 3 m depth) sampled periodically. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | |---|---|----------------------------------|--|---|--------------------------------| | S1 surface porewater samplers lagg to bog | 2011 –
2013 | South end of
S1 (near
EM1) | Unfiltered water sample from near surface (0 m) porewater samplers (N13-27) sampled ~monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | | S1 outlet chemistry | 2011 – present (historica I data, some back to the 1980s available from USFS) | S1 outlet
stream | Unfiltered water sample from the S1 outlet stream (~weekly unless not flowing). Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0 Level-1 Level-2 | | S1 groundwater chemistry | 2013 –
present | S1 uplands | Unfiltered water sample from each well (DW101, 102, 105, 106) ~monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | | S1 precipitation chemistry | 2013 –
present | S1 | Unfiltered water sample collected from each of 3 collectors (one per boardwalk) on an event basis. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | |----------------------------|-------------------|---------------------|---|---|---| | S2 precipitation chemistry | 2011 –
present | S2 MET
station | Unfiltered water sample collected from one collector at the S2 MET station on an event basis. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Forest Service data, but can be made
available through Steve. | | S2 groundwater chemistry | 2009 –
present | S2 uplands | Unfiltered water sample from one well (DW202) sampled every 2 weeks. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Forest Service data, but can be made available through Steve. | | S1/S2/Bog Lake comparison | 2014 | S1, S2, Bog
Lake | Unfiltered water sample from 3 nests of depth-specific samplers per peatland sampled monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes.
Samples –
Yes but will
be
discarded | Level-0
Level-1
Level-2 | | DOM degradation | 2011 –
present | S1 | DOM degradation experiments are done periodically. Unfiltered or filtered water samples are collected from piezometers of interest, placed into amber glass vials, and stored (capped) on the benchtop for up to 1 year with periodic analysis for TOC. | Data – Yes. | Level-0
Level-1
Level-2 | | Piezometer hydraulic head | 2011 –
present | All locations | Depth to water and distance from bog surface to top of piezometer. Measured each time a water sample is collected for chemistry. | Data – Yes. | Level-0
Level-1
Level-2 | |---|-------------------|---|---|-------------|-------------------------------| | Test corral outflow | 2012 –
present | S1 SPRUCE
test corral | Water height in the test corral reservoir. Measured every 4 hr when no or slow infilling rate or every 30 sec when the water level changed by 50 or more mm. Data will likely be released in summary form, whether weekly, monthly, or event-based. | Data – Yes. | Level-0
Level-1
Level-2 | | SPRUCE depth-specific porewater chemistry | 2015 –
2025 | S1 expt
treatment +
ambient plots
7 & 21 | Unfiltered water sample from 1 nest of depth-specific piezometers per plot. Biweekly sampling for 10 expt plots and monthly for 2 ambient plots. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | SPRUCE depth-specific porewater chemistry | 2015 –
2025 | S1 ambient plots | Unfiltered water sample from 1 nest of depth-specific piezometers per ambient plot (2, 5, 9, 14, 15). Sample 3x per year. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | SPRUCE outflow chemistry | 2015 –
2025 | S1 expt plots | Unfiltered water sample from each autosampler. Sampling every week or on an event basis. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | S1 depth-specific porewater chemistry (Test 1-6 piezometers) | 2015 –
2025 | South end of
S1 (near
EM1) | Unfiltered water sample from one nest of depth-specific samplers Test 1-6 (0 – 3 m depth) and EM1 (0 m) monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | |--|----------------|----------------------------------|---|-------------|---------| | S1 outlet chemistry | 2015 –
2025 | S1 outlet
stream | Unfiltered water sample from the S1 outlet stream (~weekly unless not flowing). Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | S1 groundwater chemistry | 2015 –
2025 | S1 uplands | Unfiltered water sample from each well (DW101, 102, 105, 106) ~monthly. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, ortho-phosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | S1 precipitation chemistry | 2015 –
2025 | S1 | Unfiltered water sample collected from each of 3 collectors (one per boardwalk) on an event basis. Analyzed for pH, ANC, specific conductivity, TOC, nutrients (nitrate, ammonium, orthophosphate, TN, TP), cations, anions, TOC, water isotopes. | Data – Yes. | Planned | | DOM degradation | 2015 –
2025 | S1 | DOM degradation experiments will be done periodically. Unfiltered or filtered water samples are collected from piezometers of interest, placed into amber glass vials, and stored (capped) on the benchtop for up to 1 year with periodic analysis for TOC. | Data – Yes. | Planned | | Piezometer hydraulic head | 2015 –
2025 | S1 | Depth to water and distance from bog surface to top of piezometer. Measured each time a water sample is collected for chemistry. | Data – Yes. | Planned | |--|----------------|-------------------------------------|--|-------------|---------| | Well water level | 2015 –
2025 | S1 expt plots | Depth to water and distance from bog surface to top of well. Measured every 2 weeks as a manual measurement to compare to logged water level data. | Data – Yes. | Planned | | SPRUCE outflow | 2015 –
2025 | S1 expt plots
and test
corral | Water outflow from each experimental plot. Measured every 4 hr when no or slow infilling rate or every 30 sec when the water level changes by 50 or more mm. | Data – Yes. | Planned | | Snow and ice depth | Planned | S1 | Occasional measurement of snow and ice depth in S1 and snow water equivalents during winter | Data – Yes. | Planned | | Throughfall | Planned | S1 expt plots | Throughfall volume and chemistry under different canopy types in the experimental plots. | Data – Yes. | Planned | | Water level in piezometers via sensors | Planned | S1 expt plots
and test
corral | Sampling frequency and durations to be determined. In the expt plots, measurements will be occasional, though likely repeated seasonally or annually. The data will be used to calculate saturated hydraulic conductivities with depth in the plots. | Data – Yes. | Planned | | Ammonium isotopes | Planned | S1 expt plots | Natural abundance ammonium isotopes in porewater from deep porewater samplers (2-3m). | Data – Yes. | Planned | | | | | | | | ### **SPRUCE Collaborator Data Sets** Projects listed in the order in which they joined the SPRUCE effort. Subsequent data summaries are in that same order. ### **List of Collaborator Projects** | Order | Principal
Investigator | Project Title | Primary institution | Other
Investigators and
Institutions | Funding
Source | Funded
Project
Duration | Postdocs, students | Summary of
Meas. &
Obs.
Provided | |-------|---------------------------|--|---------------------------------------|--|---------------------------|--|---|---| | 1 | Joel E.
Kostka | The response of soil carbon storage and microbially mediated carbon turnover to simulated climatic disturbance in a northern peatland forest: revisiting the concept of soil organic matter recalcitrance. | Georgia
Institute of
Technology | Jeff Chanton,
Florida State
University | US DOE
BER | 2012-2013 | Georgia Tech
students: Patrick
Chanton, Kait Esson,
Melissa Warren;
Georgia Tech
postdoc: Xueju Lin;
FSU postdoc: Malak
Tfaily; ORNL
postdoc: Meg
Steinweg | Yes | | 2 | Scott D.
Bridgham | Understanding the mechanisms underlying heterotrophic CO ₂ and CH ₄ fluxes in a peatland with deep soil warming and atmospheric CO ₂ enrichment | University
of Oregon | Jason Keller,
Chapman
University | US DOE
BER | 2013-2015
(will ask for
extension) | Laurel Pfeifer-
Meister, Cassandra,
Medvedeff, Anya
Hopple | Yes | | 3 | Brandy
Toner | Mercury and sulfur dynamics in the spruce experiment | University
of
Minnesota | Ed Nater (University of Minnesota) in collaboration with Randall Kolka and Stephen Sebestyen (USDA Forest Service) | USDA
Forest
Service | 2012-2016 | Olha Furman | Yes | | 4 | Andrew D.
Richardson | Improving models to predict phenological responses to global change. | Harvard
University | Morgan Furze
NSC Work | US DOE
BER | 2013-2015 | Miriam Johnston
(PhD student,
Harvard University);
Donald Aubrecht
(Postdoc, Harvard
University) | Yes | | 5 | Bruce
McCune | Lichen community responses to warming. | Oregon
State
University |
Sarah Jovan,
USDA Forest
Service; Peter R.
Nelson, Univ of
Maine Fort Kent. | USFS-
FHM | 2013-2017 | Robert J. Smith, OSU | Yes | |----|----------------------|--|---|---|---|-----------|--|-------------------| | 6 | Erik
Lilleskov | Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate change. | USDA
Forest
Service | ??? | Joint
Genome
Institute
Support | 2013- | ??? | ??? | | 7 | Joel E.
Kostka | Toward a predictive understanding of the response of belowground microbial carbon turnover to climate change drivers in a boreal peatland. | Georgia
Institute of
Technology | Jeff Chanton &
William T. Cooper,
Florida State
University | US DOE
BER | 2014-2017 | Georgia Tech
students: Melissa
Warren; Georgia
Tech postdoc: Max
Kolton; FSU postdoc:
Rachel Wilson | Yes | | 8 | Kirsten
Hofmockel | Can microbial ecology inform ecosystem level c-n cycling response to climate change? | Iowa State
University | Erik Hobbie,
University of New
Hampshire | US DOE
BER | 2014- | Fan Yang (Post-doc) | Yes | | 9 | Carl Mitchell | Peatland Mercury Cycling in a
Changing Climate: A Large-Scale
Field Manipulation Study | University
of Toronto
Scarboroug
h | Randy Kolka,
USFS | Universit
y of
Toronto,
NSERC | 2013-2015 | Kristine Haynes, PhD
Candidate | Yes | | 10 | Adrian Finzi | Effects of experimental warming & elevated CO ₂ on trace gas emissions from a northern Minnesota black spruce peatland: measurement and modeling. | Boston
University | N/A [single
investigator award] | US DOE
BER | 2014-2017 | Allison Gill (PhD
Student) | Mostly
Planned | | 11 | Karis
McFarlane | Functioning of wetlands as a source of atmospheric methane: a multi-scale and multi-disciplinary approach. | | Xavier Mayali,
Mike Singleton,
Ate Visser,
Jennifer Pett-Ridge,
Brad Esser,
Tom Guilderson | LLNL
LDRD | 2014- | Gavin McNicol
Mary Whelan | Yes | | 12 | Brian Hill | Using microbial enzyme decomposition models to study the effects of peat warming and/or CO ₂ enrichment on peatland decomposition. | US EPA,
Duluth | Colleen M. Elonen,
Terri M. Jicha, Mary
F. Moffett US
Environmental
Protection Agency | US EPA | 2014- | | Yes | |----|-------------------------|---|---------------------------------------|--|------------------------------|-----------|-------------------------------------|---------| | 13 | Joel E.
Kostka | The role of the Sphagnum microbiome in carbon and nutrient cycling in peatlands - JGl's Community Science Program. | Georgia
Institute of
Technology | Gen Glass, Georgia Institute of Technology, David Weston Oak Ridge National Laboratory, Erik Lilleskov USDA Forest Service – Houghton, MI, Jon Shaw Duke University, and Susannah Tringe | Joint
Genome
Institute | 2015-2017 | Georgia Tech
postdoc: Max Kolton | Yes? | | 14 | Zoë Lindo | Soil fauna biodiversity sampling at SPRUCE | University of Western Ontario | | ????? | 2015- | | Planned | | 15 | Michael J.
Falkowski | Monitoring warming and elevated CO ₂ induced changes in photosynthetic efficiency via canopy spectral reflectance. | University
of
Minnesota | Evan Kane Michigan Technological University, Brian Benscoter Florida Atlantic University, & Randy Kolka US Forest Service | ???? | 2015- | | Planned | | 16 | Jonathan
Schilling | Wood decomposition rates and functional types in a shifting climate | University
of
Minnesota | Jason Oliver,
University of
Minnesota, Randy
Kolka, United
States Forest
Service | ???? | 2015- | | Planned | | 17 | Jessica
Gutknecht | Microbial growth and carbon and nutrient use partitioning under peatland warming and elevated CO ₂ . | University
of
Minnesota | | UofM
Start-up
Funds | 2014- | | Yes | | |----|----------------------|---|-------------------------------|--|---------------------------|-------|--|-----|--| |----|----------------------|---|-------------------------------|--|---------------------------|-------|--|-----|--| | SPRUCE
Collaborator
TASKS | | Response of Belowground C Stocks to Climate Change – Kostka and Chanton | | | | | | | | | |--|--------------------|---|----------------|-------------|--------------------|-------------------------------|--|--|--|--| | Principal
Contact: | | Joel Kostka, joel.kostka@biology.gatech.edu; Jeff Chanton, jchanton@fsu.edu | | | | | | | | | | Co-
Investigators: | | Max Kolton, MaxKolton@gmail.com; Bill Cooper, wcooper@fsu.edu,
Rachel Wilson, rachelmywilson@gmail.com | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | | DOC characterization by FTMS | Kostka
Chanton | 2013 | Transect 1 | Porewater | Data | Level-0
Level-1
Level-2 | | | | | | Pore water CO_2 , CH_4
Concentrations and $\overline{\delta}^{13}C$: | Kostka | 4, 6, 7 and 9
2014 | 1-10 | Porewater | yes | Level-0
Level-1
Level-2 | | | | | | Radiocarbon on PW DIC, DOC And CH ₄ with LLNL (Karis, Tom) | Chanton | 4, 6, 7 and 9
2014 | 1-10 | Porewater | yes | Level-0
Level-1
Level-2 | | | | | | Characterization of peat by FTIR and NMR | Kostka | 6/2014 | selected | Peat | yes | Level-0
Level-1
Level-2 | | | | | | OUT FLOW DOC
14C | Chanton | 9/ 2014 | outlfow | Peat | yes | Level-0
Level-1
Level-2 | | | | | | Microbial community
characterization
SSU rRNA genes | Kostka | 6, 9
2014 | 1-10 | Peat | yes | Level-0
Level-1
Level-2 | | | | | | Microbial community
characterization
Meta-genomes/
transcriptomes | Chanton | 6, 9
2014 | selected | Peat | yes | Level-0
Level-1
Level-2 | | | | | | Pore water CO2,
CH4
Concentrations and
d13C: | Kostka | 4, 6, 7 and 9
2015 | 1-10 | Porewater | Planned | |--|---------|-----------------------|------------------------|------------|---------| | Radiocarbon on DIC,
DOC and CH4 with
LLNL (Karis, Tom) | Chanton | 4, 6, 7 and 9
2015 | 1-10 | Porewater | Planned | | DOC characterization by FTMS And parafac analysis | Kostka | 4 and 9
2015 | 0 and 10C
plots | Porewater | Planned | | Characterization of peat by FTIR, FTMS, NMR | Chanton | 6/2015 | selected | Peat | Planned | | OUT FLOW DOC
14C | Kostka | 4 and 9/
2014 | Outflow and sites 1-10 | Bog Water | Planned | | Microbial community
characterization
SSU rRNA genes | Chanton | 7, 9
2015 | 1-10 | Peat | Planned | | Enzyme Activity | Kostka | 7, 9
2015 | 1-10 | Peat | Planned | | Microbial community characterization Meta-genomes / transcriptomes | Chanton | 7, 9
2015 | selected | Peat | Planned | | Microbial community
characterization
SSU rRNA genes | Kostka | 4/2015 | selected | Peat | Planned | | Microcosms Sample adjacent to enclosures | Chanton | 7, 9
2015 | selected | Peat | Planned | | Living, green
Sphagnum for
microbiome studies | Kostka | 7/2015 | selected | Vegetation | Planned | | SPRUCE
Collaborator
TASKS | | | | erlying heterotrophic CO2
d atmospheric CO2 enrich
al. | | | | | | | | |---|--------------------|---|--|--|----------------------------------|-------------------------------|--|--|--|--|--| | Principal Contact: | | Sco | ott Bridgham, Univ. o | f Oregon, bridgham@uoregor | n.edu | | | | | | | | Co-
Investigators: | | Jason Keller, Chapman Univ.; Qianlai Zhuang, Purdue Univ. | | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | | | Porewater H ₂ , acetate, phenolics | Scott
Bridgham | 6/2-9/14 | small piezometers in
Plots 4,6,8,10,11,
13,16,17, 19, 20 | porewater H ₂ , acetate, phenolics, etc. | yes | Level-0
Level-1
Level-2 | | | | | | | Porewater H ₂ , acetate, phenolics | Scott
Bridgham | 7/21/14 | small piezometers in
Plots 4,6,8,10,11,
13,16,17, 19, 20 | porewater H ₂ , acetate, phenolics, etc. | yes | Level-0
Level-1
Level-2 | | | | | | | Porewater H ₂ , acetate, phenolics | Scott
Bridgham | 9/8-10/14 | small piezometers in
Plots 4,6,8,10,11,
13,16,17, 19, 20 | porewater H ₂ , acetate, phenolics, etc. | yes | Level-0
Level-1
Level-2 | | | | | | | Methane cycle
observations | Scott
Bridgham | 9/8-10/14 | peat cores | CH ₄ and CO ₂ production, CH ₄ pathways, homoacetogenesis, total acetate production (along with other fermentation products)-all at <i>in situ</i> temps. | Data | Level-0
Level-1
Level-2 | | | | | | | Acetate, phenolics | Scott
Bridgham | 4/1-2/2015 | small piezometers in
Plots 4,6,8,10,11,
13,16,17, 19, 20 | Acetate, phenolics, etc. | Porewater
frozen at -
20°C | Planned | | | | | | | Methane cycle observations | Scott
Bridgham | 3 times
during 2015
growing
season | peat cores | CH ₄ and CO ₂ production, CH ₄ pathways, homoacetogenesis, total acetate production (along with other fermentation products), anaerobic CH ₄ oxidation | Data | Planned | | | | | | | Determination of gross CH ₄ production and consumption | Scott
Bridgham | 3 times
during 2015
growing
season | TBD | Determination of gross CH4 production and consumption using 13CH4 dilution in plots if OK'd, otherwise outside plots. | Data | Planned | |---|-------------------|---|------------|---|------|---------| | Potentially mineralizable C in peat profile in long-term lab incubations | Scott
Bridgham | Fall 2017 if
renewal
funded | peat cores | Potentially mineralizable C in peat profile in long-term lab incubations | Data | Planned | | Addition of labeled organic substrates in lab to follow fermentation pathways | Scott
Bridgham | 2016, 2017
if renewal
funded | peat cores | Addition of labeled organic substrates in lab to follow fermentation pathways | Data | Planned | | SPRUCE
Collaborator
TASKS | Mercury and Sulfur Dynamics in the SPRUCE Experiment – Toner et al. | | | | | | | | | |--|---|-----------------------------|---|---|--|-------------------------------|--|--|--| | Principal Contact: | | Brandy Toner, toner@umn.edu | | | | | | | | | Co-
Investigators: | | Edward | | ı.edu), Randall Kolka (rkolka@
en (ssebestyen@fs.fed.us) | fs.fed.us), | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | Sulfur XANES (peat; in progress): | Brandy
Toner | "time zero"
2012 | Chambers (analyzed, treed hollows): 4,6,7,10,13,16,17,20, 21 [3,5,8,9,11,14,15,19*] Chambers (analyzed, treed hummocks): 4,6,10,13,17 [7,21*] Chambers (no tree, hum): [4*] Chambers (no tree, hol): [4*] | Peat from cores, frozen under N₂ | Yes, for
un-
analyzed
samples,
indicated
with * | Level-0
Level-1
Level-2 | | | | | Total mercury and methyl-mercury, CNS (peat; in progress): | Brandy
Toner | "time zero"
2012 | Chambers
(4,5,6,7,8,9,10,11,13,14,
15,16,17,19,20,21) Total
for most samples;
methyl-mercury for
selected samples | Peat from cores, freeze-dried | Yes, for
majority of
samples | Level-0
Level-1
Level-2 | | | | | Dissolved sulfur and mercury species, hydrogen sulfide (H ₂ S), sulfate (SO ₄ ²⁻), S-DOM, total mercury, methylmercury | Brandy
Toner | Summer
2013 | Outside SPRUCE
chambers (S1, S3, Bog
Lake) | Piezometer water, frozen, freeze-
dried | no | Level-0
Level-1
Level-2 | | | | | Total mercury and methyl-mercury (peat; in progress) | Brandy
Toner | 06/03/2014 | Chambers
(4,6,8,10,13,16,17,19,20
,21 [partial core]) | Peat from cores, freeze-dried | Yes, for
majority of
samples | Level-0
Level-1
Level-2 | |---|-----------------|--|---|--|------------------------------------|--------------------------------------| | Total mercury and methyl-mercury (peat; in progress) | Brandy
Toner | 09/09/2014 | Chambers
(4,6,8,10,13,16,17,19,20
) | Peat from cores, freeze-dried | Yes, for
majority of
samples | Level-0
Level-1
Level-2 | | Total mercury (spruce needles) | Brandy
Toner | Winter 2014 | Outside SPRUCE chambers (S1, S3, S6) | Yr 1 Black spruce needles | no | Level-0
Level-1
Level-2 | | ¹⁴ C, ¹³ C for C-dating,
bulk density, total C
(peat) | Brandy
Toner | Winter 2011 | Outside SPRUCE
chambers (S1, S2, Bog
Lake) | Frozen peat blocks, 1 cm increments on cellulose extracted from sphagnum | yes | Level-0
Level-1
Level-2 | | Sulfur XANES (peat): | Brandy
Toner | Yearly?
(August
2015-20XX) | Treatment and control chambers | Peat from cores, stored frozen under N ₂ | no | Planned | | Sulfur XANES (pore water, i.e. S-NOM): | Brandy
Toner | Monthly
(April –
November
2015-20XX) | Treatment and control chambers | Piezometer, stored frozen under N ₂ , analyzed freeze-dried | no | Planned | | Total- and methyl-
mercury (peat): | Brandy
Toner | Yearly
(August
2015-20 <mark>XX</mark>) | Treatment and control chambers | Peat from cores, stored frozen | no | Planned | | Total- and methyl-
mercury (pore water) | Brandy
Toner | Monthly
(April –
November
2015-20 <mark>XX</mark>) | Treatment and control chambers | Piezometer, stored frozen | no | Planned | | Aqueous sulfur species (H ₂ S), sulfate (SO ₄ ²⁻) | Brandy
Toner | Monthly
(April –
November
2015-20 <mark>XX</mark>) | Treatment and control chambers | Piezometer, stored frozen under N ₂ | no | Planned | | Total mercury | Brandy
Toner | 03/20/2015 | Treatment and control chambers | Black spruce needles | no | Planned | | SPRUCE
Collaborator
TASKS | lmį | Improving models to predict phenological responses to global change – Richardson and Johnston | | | | | | | | |---|----------------------|---|---|---|-----------------------|--|--|--|--| | Principal Contact: | | Andrew Richardson; arichardson@oeb.harvard.edu | | | | | | | | | Co-
Investigators: | | Miriam Johnston (mjohnston@g.harvard.edu) | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | Phenology Images | Andrew
Richardson | 2015 and
beyond | Plots 4, 6,8,10,11,
13,16,17, 19, 20 | Photographs (.jpeg) acquired using NetCamSC 1.3 megapixel Stardot cameras (Buena Park, CA). | Yes
Images | Images will be publicly available on the PhenoCam web page (http://phenocam.sr.unh.edu/) | | | | | We will install networked digital cameras to take photographs, every 30 minutes, of the vegetation in each experimental chamber. The cameras will be installed as soon as chamber construction has been completed (June 2015). The stated goal is to collect data during two complete growing seasons, but cameras will be kept in place for as long as feasible (ideally the 10 year duration of the experiment). Although DOE funding ends in August 2015, the PI will use other funds to support camera maintenance in future years. | SPRUCE
Collaborator
TASKS | Long term responses of nonstructural carbon to elevated CO ₂ and temperature in boreal peatland bog forest vegetation – Furze et al. | | | | | | | | |---------------------------------|---|--|--|---|--|--------------------------------|--|--| | Principal
Contact: | | Morgan Furze; mfurze@fas.harvard.edu | | | | | | | | Co-
Investigators: | | | Andrew Richardson (| arichardson@oeb.harvard.edu |) | | | | |
Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | Nonstructural
Carbohydrates | Morgan
Furze | April, June,
September,
November
2013 | S1-Bog | Measured NSC (bulk sugars and starch) in tissue samples acquired from Anna Jensen: P. mariana (root, branch) L. laricina (root, branch) C. calyculata (foliage, branch) L. groenlandicum (foliage, branch) | Data | Level-0 Level-1 Level-2 | | | | Nonstructural
Carbohydrates | Morgan
Furze | June 2015, January 2016, June 2016, January 2017, June 2018 (annual sampling will continue indefinitely) | Within the 10
experimental chambers
from designated
tree/branch locations | At each sampling date, I will collect a 6 to 8 cm multiyear (2-3 yo) branch sample from n=3 trees of each of the below species per experimental chamber (n=10), to yield 120 samples per collection: P. mariana, L. laricina, C. calyculata, L. groenlandicum NSC content will be measured for each sample. Additional samples for each species will be collected, each sampling date, from plants growing outside of the enclosures. | Surplus freeze-dried and ground plant tissue that is not analyzed for NSC will be archived in a -80° freezer at Harvard for future analyses. | Planned | | | | SPRUCE
Collaborator
TASKS | Lichen community responses to warming – McCune et al. | | | | | | | | | |--|---|--|--|-----------------------------|--------------------|-------------------------------|--|--|--| | Principal
Contact: | Bru | Bruce McCune, Oregon State University; Bruce.McCune@science.oregonstate.edu Sarah Jovan, USDA Forest Service, Portland, OR; Peter R. Nelson, Univ of Maine, Fort Kent; Robert J. Smith, Oregon State University | | | | | | | | | Co-
Investigators: | Sarah Jo | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Document lichen community composition | Bruce
McCune | Aug 2013
Aug 2014 | 4,5,6,8,10,11,13,14,16,1
7,19,20 | Non-destructive observation | To do | Level-0
Level-1
Level-2 | | | | | Lichen transplant
biomass | Bruce
McCune | Aug 2013
Aug 2014 | 4,5,6,8,10,11,13,14,16,1
7,19,20 | Non-destructive
weighing | To do | Level-0
Level-1
Level-2 | | | | | Document lichen community composition | Bruce
McCune | Aug 2015 | 4,5,6,8,10,11,13,14,16,1
7,19,20 | Non-destructive observation | To do | Planned | | | | | Lichen transplant biomass | Bruce
McCune | Aug 2015 | 4,5,6,8,10,11,13,14,16,1
7,19,20 | Non-destructive weighing | To do | Planned | | | | | Document lichen community composition off-site | Bruce
McCune | Aug 2015 | Beyond SPRUCE area, Marcell Exp Forest | Non-destructive observation | To do | Planned | | | | | SPRUCE
Collaborator
TASKS | Funga | Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate change - Lilleskov | | | | | | | |---|--------------------|---|----------------|-------------|--------------------|------------------------|--|--| | Principal
Contact: | | Erik Lilleskov | | | | | | | | Co-
Investigators: | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | Are any direct SPRUCE Study observations Planned? | Erik
Lilleskov | | | | | | | | | S1-Bog Samples? | Erik
Lilleskov | | | | | | | | | Marcell Experimental Forest Samples? | Erik
Lilleskov | | | | | | | | | | Erik
Lilleskov | | | | | | | | | | Erik
Lilleskov | | | | | | | | | | Erik
Lilleskov | | | | | | | | | SPRUCE
Collaborator
TASKS | Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models? - Hofmockel and Hobbie | | | | | | | | | |-------------------------------------|--|---|-------------------------------------|--|--|-------------------------------|--|--|--| | Principal
Contact: | | Kirsten S. Hofmockel, kirsten.hofmockel@gmail.com | | | | | | | | | Co-
Investigators: | | Erik Hobbie University of New Hampshire | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | | | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | | | | рН | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | | | | рН | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | | | | Gravimetric water content | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | | | | Gravimetric water content | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | | | | microbial biomass C
and N | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | |--|----------------------|-----------|-------------------------------------|--|--|--------------------------------------| | microbial biomass C
and N | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Ergosterol | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | Ergosterol | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 6/5/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Fresh peat cores: hummock 0 to - 30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Sporocarp collection | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Sporocarps | NA | Level-0
Level-1
Level-2 | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | |-------------------------------------|----------------------|-----------|-------------------------------------|--|--|-------------------------------| | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | рН | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) |
Level-0
Level-1
Level-2 | | рН | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | рН | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Gravimetric water content | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Gravimetric water content | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Gravimetric water content | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | microbial biomass C
and N | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | microbial biomass C and N | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | |--|----------------------|-----------|-------------------------------------|--|--|-------------------------------| | microbial biomass C
and N | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Ergosterol | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Ergosterol | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Ergosterol | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | |---|----------------------|-----------|---|--|--|-------------------------------| | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal hyphae
stable isotopic
signature | Kirsten
Hofmockel | 9/20/2013 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal hyphae
stable isotopic
signature | Kirsten
Hofmockel | 6/18/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal hyphae
stable isotopic
signature | Kirsten
Hofmockel | 9/9/2014 | S1 south end (outside of the rings) | Ingrowth peat cores: hummock 0 to -30 cm; hollow 0 to -20 cm | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) ??Plots 4,6,8,10, 11, 13, 16, 17, 19, 20, 7, 21?? | Fresh peat cores: paired hummock and hollow (0 to -30 cm); replaced with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | рН | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock and hollow (0 to -30 cm); replaced with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Gravimetric water content | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock
and hollow (0 to -30 cm); replaced
with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | microbial biomass C
and N | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock
and hollow (0 to -30 cm); replaced
with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | | 1 | | I | | | | |---|----------------------|---------------------------------|----------------------------|---|--|-------------------------------| | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock and hollow (0 to -30 cm); replaced with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock and hollow (0 to -30 cm); replaced with ingrowth cores | Frozen (-
80°C) &
Dried
(105°C) | Level-0
Level-1
Level-2 | | Peat hydrolytic enzyme assays | Kirsten
Hofmockel | 6/1/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 9/9/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Level-0
Level-1
Level-2 | | Sporocarp identification | Kirsten
Hofmockel | 9/9/2014 | S1-Bog Plots and transacts | Sporocarp removal from plots
Essentially nondestructive | Data | Level-0
Level-1
Level-2 | | Microcosm respiration | Kirsten
Hofmockel | 1/7/2015 –
4/11/2015
2015 | Lab incubation | Fresh peat: hummock, 0 to -15 cm | Data | Level-0
Level-1
Level-2 | | 15N, 13N | Erik
Hobbie | | | | | | | Ergosterol | Kirsten
Hofmockel | 5/31/2014 | S1 (12 rings) | Fresh peat cores: paired hummock and hollow (0 to -30 cm) | Frozen (-
80°C) &
Dried
(105°C) | Planned | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 6/1/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | | Bacterial 16S
amplicon sequences
(cDNA) | Kirsten
Hofmockel | 9/9/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 6/1/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | | Fungal ITS amplicon sequences (cDNA) | Kirsten
Hofmockel | 9/9/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | |--|----------------------|--------------------------|---|---|--|---------| | Metatranscriptomics
on selected samples
amplicon sequences
(cDNA) | Kirsten
Hofmockel | 6/1/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | | Metatranscriptomics
on selected samples
amplicon sequences
(cDNA) | Kirsten
Hofmockel | 9/9/2014 | S1 (12 plots) | Fresh peat from Deep Peat
Heating (DPH) experiment | Frozen (-
80°C) | Planned | | Peat hydrolytic
enzyme
assays | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm
| Frozen (-
80°C) &
Dried
(105°C) | Planned | | Microcosm
respiration | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm | Frozen (-
80°C) &
Dried
(105°C) | Planned | | microbial biomass C
and N | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm | Frozen (-
80°C) &
Dried
(105°C) | Planned | | Gravimetric water content | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm | Frozen (-
80°C) &
Dried
(105°C) | Planned | | Bacterial 16S
amplicon sequences
(DNA) | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm | Frozen (-
80°C) &
Dried
(105°C) | Planned | | Fungal ITS amplicon sequences (DNA) | Kirsten
Hofmockel | 4/22/2015 –
4/25/2015 | Lab incubation (peat from outside of the rings) | Fresh peat: hummock, 0 to -15 cm | Frozen (-
80°C) &
Dried
(105°C) | Planned | | SPRUCE
Collaborator
TASKS | | Peatland Mercury Cycling in a Changing Climate: A Large-Scale Field Manipulation Study – Mitchell et al. | | | | | | | | |--|--------------------|---|---|-------------------|--|-------------------------------|--|--|--| | Principal
Contact: | | Dr. Carl Mitchell (University of Toronto Scarborough); carl.mitchell@utoronto.ca | | | | | | | | | Co-
Investigators: | | Kristine Haynes (PhD Candidate); k.haynes@utoronto.ca Randy Kolka (USFS) | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Trial of Mercury Flux
Monitoring Using
Dynamic Flux
Chambers | Kristine
Haynes | Aug. 2013 | two flux chambers
placed (for 24 hrs) in
each of Plots #6, 8, 10,
19 | gaseous fluxes | N/A | Level-0
Level-1
Level-2 | | | | | Pre-DPH Gaseous Mercury Flux Monitoring using Dynamic Flux Chambers | Kristine
Haynes | May-June
2014 | two flux chambers
placed (for 24 hrs) in
each of Plots #4, 6, 10,
13, 17, 19 | gaseous fluxes | N/A | Level-0
Level-1
Level-2 | | | | | Pre-DPH SPRUCE
Peat Sampling for
Total Mercury
Analysis | Kristine
Haynes | June 2014 | Plots #4, 6, 8, 10, 11, 13, 16, 17, 19, 20 | peat (0 - 50 cm) | remainder
of
lyophilized
peat
archived | Level-0
Level-1
Level-2 | | | | | Peak-DPH Gaseous
Mercury Flux
Monitoring using
Dynamic Flux
Chambers | Kristine
Haynes | Aug. 2014 | two flux chambers
placed (for 24 hrs) in
each of Plots #4, 6, 10,
13, 17, 19 | gaseous fluxes | N/A | Level-0
Level-1
Level-2 | | | | | Peak-DPH SPRUCE
Peat Sampling for
Total Mercury
Analysis | Kristine
Haynes | Aug. 2014 | Plots #4, 6, 8, 10, 11, 13, 16, 17, 19, 20 | peat (0 – 100 cm) | remainder
of
lyophilized
peat
archived | Level-0
Level-1
Level-2 | | | | | Gaseous Mercury
Flux Monitoring
using Dynamic Flux
Chambers | mid-June
2015 | two flux chambers to be
placed (for 24 hrs) in
each of Plots #4, 6, 10,
13, 17, 19 | gaseous fluxes | N/A | Planned | |--|---|---|-------------------|--|---------| | Gaseous Mercury Flux Monitoring using Dynamic Flux Chambers | mid-Aug.
2015 | two flux chambers to be
placed (for 24 hrs) in
each of Plots #4, 6, 10,
13, 17, 19 | gaseous fluxes | N/A | Planned | | If annual SPRUCE peat sampling is occurring, Peat Collection for Total Mercury Analysis | ? | Plots #4, 6, 8, 10, 11, 13, 16, 17, 19, 20 | peat (0 – 100 cm) | remaining
lyophilized
peat
material | Planned | | If permitted, perform micrometeorological gradient technique to monitor peatland mercury flux (electricity required approx. 350W) | throughout 2015 growing season – set up analyzer following initial plot chamber measureme nts in June | at end of boardwalk #2
or #3 (centrally located
in S1) | gaseous flux | N/A | Planned | | SPRUCE
Collaborator
TASKS | | Effects of experimental warming & elevated CO ₂ on trace gas emissions from a northern Minnesota black spruce peatland: measurement and modeling - Finzi | | | | | | | | |-----------------------------------|--------------------|---|---|---|--------------------|-------------------------------|--|--|--| | Principal
Contact: | | Adrien Finzi. afinzi@bu.edu | | | | | | | | | Co-
Investigators: | | Allison Gill | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Small Collar Test
Measurements | Adrien
Finzi | 2014 | Plots
4,6,8,10,11,13,16,17,19,
20 | Automated flux collars | Data | Level-0
Level-1
Level-2 | | | | | Automated Flux
Collars | Adrien
Finzi | 2015- | Plots
4,6,8,10,11,13,16,17,19,
20 | Automated flux collars:
Hummock vs. Hollow | Data | Planned | SPRUCE
Collaborator
TASKS | D | ¹⁴ C, ¹³ C, and ² H of surface CO ₂ and CH ₄ fluxes, canopy air/local atmosphere; ¹⁴ C-DOC; ¹³ C and ¹⁵ N Chip-SIP of methanogens/trophs; ebullition history reconstruction with porewater noble gas profiles – McFarlane et al. | | | | | | | |--|-----------------------------------|--|--|------------------------------|--------------------|-------------------------------|--|--| | Principal
Contact: | | Karis McFarlane | | | | | | | | Co-
Investigators: | Т | Tom Guilderson, Xavier Mayali, Ate Visser, Jennifer Pett-Ridge, Mike Singleton | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | ¹⁴ C, ¹³ C, ² H of
surface C fluxes | K.
McFarlane | 2014, April
plus monthly
June-Sept | All 10 treatment plots,
large surface
chambers | Gas/whole air | Data | Level-0
Level-1
Level-2 | | | | ¹⁴ C-DOC (w/Jeff
Chanton) | K.
McFarlane/
J.
CHANTON | 2014 April plus monthly June-Sept | All 10 treatment plots plus outflux. Depths tbd. | Liquid/porewater | Data | Level-0
Level-1
Level-2 | | | | ¹⁴ C of canopy/local
atmosphere CO ₂
and CH ₄ | K.
McFarlane | 2015- CO ₂ :
weekly
June-Sept?
CH ₄ : one
time mid-
summer | Possibly only at Plot 2 (ambient reference site) OR at Plot 6 and Plot 17. | Gas/whole air | Data | Planned | | | | Chip-SIP (w/ Joel
Kostka and Jennifer
Glass) | X.
Mayali/J.
Pett-Ridge | 1 time, mid-
to late-
summer | TBD, will be multiple plots but undecided about replication. | Bulk Peat, incubated in lab. | Data, and
Maybe | Need to discuss. | | | | Noble gas from
porewater profiles
(coordinating w/
Steve Sebestyen) | A. Visser | 1 time mid-
to late-
summer | TBD, will be multiple plots but undecided about replication. | Liquid/porewater | Data, and
Maybe | Need to discuss. | | | | SPRUCE
Collaborator
TASKS | | Using microbial enzyme decomposition models to study the effects of peat warming and/or CO2 enrichment on peatland decomposition – Hill et al. | | | | | | | | |--|--------------------|--|--|---|--------------------------------|-------------------------------|--|--|--| | Principal
Contact: | | Brian Hill; Hill.brian@epa.gov | | | | | | | | | Co-
Investigators: | | Terri Jicha, Colleen Elonen, Mary Moffett | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Available and total nutrients | Brian Hill | 06/03/14
and
09/08/14 | All SPRUCE study plots | Peat- composites acrotelm (0-40) Catotelm (50-75) Deep peat (100-200) September only. | Stored
frozen
Duluth, MN | Level-0
Level-1
Level-2 | | | | | Microbial enzymes | Brian Hill | 06/03/14
and
09/08/14 | All SPRUCE study plots | Peat- composites acrotelm (0-40) Catotelm (50-75) Deep peat (100-200) September only. | Stored
frozen
Duluth, MN | Level-0
Level-1
Level-2 | | | | |
Nitrification/denitrific ation | Brian Hill | 06/03/14
and
09/08/14 | All SPRUCE study plots | Peat- composites acrotelm (0-40) Catotelm (50-75) Deep peat (100-200) September only. | Stored
frozen
Duluth, MN | Level-0
Level-1
Level-2 | | | | | Dry wt/LOI | Brian Hill | 06/03/14
and
09/08/14 | All SPRUCE study plots | Peat- composites acrotelm (0-40) Catotelm (50-75) Deep peat (100-200) September only. | Stored
frozen
Duluth, MN | Level-0
Level-1
Level-2 | | | | | Available and total
nutrients, microbial
enzymes,
nitrification/denitrifica
tion, dry wt/LOI | Brian Hill | 08/04/14 | Bog center (outside
SPRUCE plots-transect
1 and 2), lagg, upland | Peat- composites acrotelm (0-40)
Catotelm (50-75) | yes | Level-0
Level-1
Level-2 | | | | | Available and total
nutrients, microbial
enzymes,
nitrification/denitrifica
tion, dry wt/LOI | Brian Hill | May, July,
September
Years??? | Bog center (outside
SPRUCE plots-transect
1 and 2), lagg | Peat- composites acrotelm (0-40)
Catotelm (50-75) | yes | Planned | |--|------------|-------------------------------------|--|--|-----|---------| |--|------------|-------------------------------------|--|--|-----|---------| | SPRUCE
Collaborator
TASKS | | Soil fauna biodiversity sampling at SPRUCE - Lindo | | | | | | | | |-------------------------------------|--------------------|--|--|--|--------------------|------------------------|--|--|--| | Principal Contact: | | Zoë Lindo | | | | | | | | | Co-
Investigators: | | | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival Material? | Data Archive
Status | | | | | Micro-arthropod
Community Survey | Zoë Lindo | Later in
2015
Growing
Season | All Treatment Plots and perhaps some ambient plots | Small Surface <i>Sphagnum</i> 'clumps' | Yes? | Planned | SPRUCE
Collaborator
TASKS | Monitoring warming and elevated CO2 induced changes in photosynthetic efficiency via canopy spectral reflectance – Falkowski et al. | | | | | | | | | |---------------------------------|---|--|--|-------------|-----------------------|-------------------------------|--|--|--| | Principal
Contact: | | Michael J. Falkowski Michigan Technological University | | | | | | | | | Co-
Investigators: | Evan K | Evan Kane, Michigan Technological University, Brian Benscoter Florida Atlantic Universi
Randy Kolka, USFS | | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | | NDVI | Falkwoski | Continuous
during 2015
& 2016
growing
seasons | One of Brian Palik's 1 x 2 m plots within each SPRUCE chamber footprint, both treated and controls | Spectral | Data | Level-0
Level-1
Level-2 | | | | | Thermal IR | Falkwoski | Continuous
during 2015
& 2016
growing
seasons | One of Brian Palik's 1 x 2 m plots within each SPRUCE chamber footprint, both treated and controls | Spectral | Data | Level-0
Level-1
Level-2 | | | | | Spectral Reflectance | Falkowski | Approximate ly bi-weekly during 2015 & 2016 growing seasons | One of Brian Palik's 1 x 2 m plots within each SPRUCE chamber footprint, both treated and controls | Spectral | Data | Level-0
Level-1
Level-2 | | | | | SPRUCE
Collaborator
TASKS | Wood d | Vood decomposition rates and functional types in a shifting climate – Schilling et al. | | | | | | | |---|--------------------|--|--------------------------|--|-----------------------|------------------------|--|--| | Principal
Contact: | | Jonathan Schilling, schillin@umn.edu | | | | | | | | Co-
Investigators: | | Jason Oliver (oliv0328@umn.edu); Randy Kolka (rkolka@fs.fed.us) | | | | | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | Branch Wood Decay, Branch Wood Compositional Analysis, Branch Wood Microbial Community Analysis | | Deployment - June 2015 Harvest - June 2016,2017, 2020, 2025 | NPP areas, All Treatment | Litter Bag (20cm ²) with 10 pieces of spruce branch wood | Yes | Planned | | | | Bole Wood Decay, Bole Wood Compositional Analysis, Bole Wood Microbial Community Analysis | | Deployment-
June 2015
Harvest-
June 2020,
2025 | NPP areas, All Treatment | Boles (Length= 20cm) | Yes | Planned | | | | | | | | | | | | | | SPRUCE
Collaborator
TASKS | Microbial growth and carbon use partitioning under peatland warming and elevated CO_2 – Gutknecht et al. | | | | | | | | |---|--|-------------------------|---|---|---|--------------------------------------|--|--| | Principal Contact: | | | Jessica Gutk | necht, jgut@umn.edu | | | | | | Co-Investigators: | In t | | | currently from University sta
Ed Nater, Randy Kolka, and | | estyen | | | | Measurements | Primary
Contact | Sample periods | Plot Locations | Sample Type | Archival
Material? | Data Archive
Status | | | | d ¹³ C PLFA | Jessica
Gutknecht | 2014 June/
September | Same location as group sampling, all plots and ambient plots. All depths were sampled but some depths will be combined for the analysis due to a limited amount of sample | Bulk peat | Unlikely,
possibly
from
September | Level-0
Level-1
Level-2 | | | | d ¹³ C PLFA | Jessica
Gutknecht | Annual | All treatments, with group sampling | Bulk peat | Archived
material
may be
frozen or
freeze-
dried | Planned | | | | Amino sugar
analysis (potentially
¹³ C or ¹⁵ N) | Jessica
Gutknecht | Annual | All treatments, with group sampling | Bulk peat | Archived
material
may be
frozen or
freeze-
dried | Planned | | | | d ³⁴ SO4 | Jessica
Gutknecht | Annual and
TBD | All treatments, with group and Toner lab sampling | Bulk peat and pore water | Archived material will be frozen | Planned | | |