Change to δ^{13} C analyses for Passive Air Samples at CAMS/LLNL 3/3/2025 K. McFarlane

Impact: Switching δ^{13} C analysis from purified CO₂ via IRMS to ~ ambient CO₂ concentrations on Picarro G2201i will result in faster data reporting with minimal change to data quality

- Air samples are collected ~5 times per year, 2016-present (~May-Oct)
 - passive sampling over 6-8 hours to monitor the δ^{13} C and Δ^{14} C isotopic signatures of CO $_2$
- CO_2 is cryogenically purified, then reduced to graphite for ¹⁴C analysis by AMS.
- δ^{13} C analysis occurs offline to provide δ^{13} C values and correct Δ^{14} C for mass-dependent fractionation
 - δ^{13} C analysis was performed a split of purified CO₂ via IRMS (UC Davis through 6/2020, then TAMU through 5/2024).
 - Long delays in results in 2023 and 2024, IRMS labs don't want to run purified CO_2 ampoules.
 - Splits from June, July, August, and November 2024 were taken but not analyzed (samples are at CAMS).
- CAMS Picarro G2201i allow in-house δ^{13} C analysis
 - δ^{13} C analysis was performed on whole air taken from the 11/2024 PAS sampling flasks and injected into a Picarro G2201-i with a SSIM.
 - Picarro provides results on air samples with lower analytical precision (0.5-0.6 ‰) than IRMS (typically < 0.2 ‰) this difference has no impact on reported Δ^{14} C.
 - Picarro provides replicate standard values with <0.5‰ uncertainty
 - CO₂ splits from June, July, and August 2024 will be transferred to exetainers and diluted with CO₂-free air and analyzed on the Picarro G2201-i, most likely through SAGE autoanalyzer (released by Picarro in Dec!). Moving forward, δ^{13} C analysis will be via Picarro.

