

An overview of ELM-SPRUCE modeling efforts

May 13th, 2025

Dan Ricciuto, Xiaoying Shi, Xiaojuan Yang, Yaoping Wang, Xiaofeng Xu

and the ORNL TES SFA team

ORNL is managed by UT-Battelle LLC for the US Department of Energy

SPRUCE and the ORNL TES SFA are funded by The Environmental System Science Program, DOE BER

Motivation: Earth system models likely underestimate peatland feedbacks due to missing processes

CAK RIDGE

SPRUCE gamma = -2.45 kgC m⁻² °C⁻¹ (assuming T change over 140 years is linear)

SPRUCE modeling efforts using ELM

CAK RIDGE National Laboratory

ELM-SPRUCE carbon budget for TO simulation (slope)

*In this version of ELM, Heterotrophic C losses include CH_4 emissions. **Net C Flux = NPP – Heterotrophic CO_2 Efflux – CH_4 Efflux – TOC Efflux

ELM carbon budget for T0eCO₂ simulation

*In this version of ELM, Heterotrophic C losses include CH_4 emissions. **Net C Flux = NPP – Heterotrophic CO_2 Efflux – CH_4 Efflux – TOC Efflux

ELM-SPRUCE is developing into ELM-Peatlands: Extending SPRUCE results regionally

Automated workflow for ModEx and uncertainty quantification (UQ)

Uncertain Input Parameter priors

Applying surrogate models: Sensitivity analysis Which inputs are important?

Applying surrogate models: Joint calibration

Year of experiment (extreme warming scenario. +9C) Observations extended from Hanson et al. (2020)

- Markov Chain Monte Carlo (MCMC) technique to determine posterior parameter and output distributions
- Requires large number of serial simulations (> 10⁵), but ELM takes 4-6 hours
- Enabled by surrogate model (10³ times faster)

• Model-data mismatch reveals structural or data errors, informing model development OAK RIDGE National Laboratory

Remaining challenges

- Moss cover is currently forced, ELM is unable to represent level of mortality in warm plots
- Observed shrub growth increases larger than model predictions
- Representing changes in peat elevation
- Understanding the flows of carbon in the eCO_2 simulatons
- Bringing together different data sources for model calibration
- Understanding biases when applying ELM-SPRUCE at other sites
- Determining appropriate level of complexity for regional scaling

