

Greenhouse gas flux responses to eCO2 and increased temperatures

Stelling, J Mayes, M Krassovski, M Hanson, P

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Objectives

- Characterize the CO₂ and CH₄ emission from the moss-shrub ecosystem
 - Moss-shrub ecosystem: Everything in the experimental peatland except large trees (moss, shrubs, forbs, sedge, grass, fungi, microbes...)
- Replacement for P. Hanson large-flux collars
 - 1-2 measurements per year
- Higher temporal resolution Autochamber (Eosense)
 - 4 measurements per hour
- Response across treatments
 - ecosystem warming (+0, +2.25, +4.5, +6.75, +9°C)
 - and elevated CO₂ (eCO₂: +500 ppm)
- Q₁₀ equations for models
- Response to other environmental variables (SPRUCE)

Large flux collars (1.2 m)

Small flux collars (50 cm)

en slide master to edit

Method

- Measure Growing season fluxes (April October) 2022-2024
 - Eosense clear-top chambers with ABB GLA-131 GGA gas analyzer
 - Two domes per temperature treatment (measure every 15-minutes)
 - Fluxes calculated as 3-min CH_4 and CO_2 gas concentration change
- Measured corresponding environmental variables within the SPRUCE experiment at 30-minute intervals including: Air temperature, soil temperature (20-cm), and water table depths.

CO_2

- 3 years growing season ٠ data
- ٠
- Sparse 2022Sparse 2022More comprehensive00 ٠
- Split by PAR (night vs day)
- Seasonal pattern of nightly efflux, daytime $\frac{\geq}{\alpha}$ uptake
- **Obvious response to** ٠ temperature & eCO₂

Methane

- 2-years of growing-season data
- Most fluxes are small-scale (<100 nmol/m²/s)
- Larger flux events increased in some experimental

plots

Environmental Variable Correlations

OAK RIDGE National Laboratory

- Comparison with 30-min environmental variables (SPRUCE data stream)
- Probe responses to
 variables most important
 to CH₄/CO₂ flux
- Soil temperature
- Water table
- Soil moisture

Q₁₀

CAK RIDGE

Methane: Q₁₀ @ 20-cm soil temp + WT

 $CH_4 = BASE X Q_{10} (T_x - T_{ref})^{10} x (WT_{frac})$ WT frac = WT x a+b

	METHOD	Q10 CH₄	Base @ 15°C CH₄	a	b
Hanson et al. 2016	LARGE CHAMBER	6.3	0.179	-0.002	0.624
This study	SMALL CHAMBER	8.3	0.029	-0.002	1.149

Net Flux-24 hr

- Estimated marginal means
 - Model-based predictions of average response variable for factors by category
- Daily 24-hour period flux
- Net daily balance
- Shift to significant CO₂
 source above 2.25°C

Respiration (night)

- PAR <30 (nightly) CO_2 flux
- Ecosystem respiration (R_{eco})
- Significant increase with temperature
- Reflective of the Q₁₀
- Highlights R_{eco} cause for shift above 2.25°C
- Calculated nightly fluxes in 24-hour period for estimation of gross productivity:

Net-R_{eco} = daily gross primary productivity

10

Open slide master to edit

Gross primary productivity

- Significant differences above 4.5°C
- Ambient CO₂
 - Primary productivity
 lower or no change
- eCO_2
 - Primary productivity
 increased

Methane 24-hr

- No significant difference among the treatments
- Dominated by small-flux events (<100 nmol/m²/s)
- Large-flux events more common in heated plots (>100 nmol/m²/s)

Water table vs Temp: CH₄

- Water table driven methane flux
- Temperature driven methane flux
- Water table Temperature
- "hot spot" envelope
- Key environment when fluxes increase (>100 nmol/m²/s)

Summary of key findings

- Methane flux:
 - Dominated by low-concentration background fluxes (<100 nmol/m²/s)
 - Increase in response to temperature & water table height.
 - New WT term- Q10 fit
 - Lack statistical significance across large data time-series among the categorical variables
- CO₂ flux:
 - Significantly increased CO₂ efflux (sink to source) shift above 2.25°C
 - Driven by increased respiration (Q₁₀)
 - eCO₂ Increased primary productivity: CO₂ fertilization effect
 - Increased Moss-shrub GPP not enough to offset increased R_h

2025 season:

- Final measurement year
- R_h???
- Dry biomass quantification for flux normalizing

Biomass harvested in10 of 20 Eosense collars Sept-2024

Suggestions??

