# Implementing direct and fungi-mediated nutrients uptake in a land surface model: insights from a boreal peatland ecosystem

Yaoping Wang<sup>1</sup>, Daniel M. Ricciuto<sup>1</sup>, Jiafu Mao<sup>1\*</sup>, Soren E. Weber<sup>1</sup>, Verity Salmon<sup>1</sup>, Xiaoying Shi<sup>1</sup>, Xiaojuan Yang<sup>1</sup>, Natalie A. Griffths<sup>1</sup>, Paul J. Hanson<sup>1</sup>, Jeffrey M. Warren<sup>1</sup>, Colleen M. Iversen<sup>1</sup>, Melanie A Mayes<sup>1</sup>, Peter Thornton<sup>1</sup>

<sup>1</sup>Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830

### **Motivation**

Boreal peatlands store 13-32% of the global soil carbon. Destabilization of this C stock under high-latitude warming can be a major amplifier of the carbon-climate feedback.

The cold and waterlogged condition creates slow decomposition and low nutrients availability, resulting in slow vegetation growth.

Under nutrient limitation, plants form symbiotic relationship with ectomycorrhizal fungi (EcM) and ericoid mycorrhizal fungi (ErM), which can mine organic nutrients.

### **Motivation**

Plants response to  $CO_2$  fertilization and nutrients availability are affected by fungi association.



Few land surface models/ecosystem models represent this association, and existing studies have not jointly considered EcM and ErM.

### **Study objective**

Modify plant nutrients uptake in the ELM-SPRUCE model to implicitly represent EcM and ErM pathways

Analyze modeled ecosystem response to warming and CO<sub>2</sub> addition at the SPRUCE whole-ecosystem warming experiment

| Species                           | Percentage cover                     | Fungi association |
|-----------------------------------|--------------------------------------|-------------------|
| Black spruce (Picea mariana)      | ~34%                                 | EcM               |
| Eastern tamarack (Larix laricina) | ~14                                  | EcM               |
| Various ericaceous shrubs         | ~25%                                 | ErM               |
| Sphagnum moss                     | ~25% initially, decline with warming | N/A               |

### **Model updates**

# Default model – mineral nutrients only, demand-driven

### Modified model – mineral fine root, mineral fungi, organic fungi uptakes



### **Simulation experiments**



### Validation on temperature sensitivity of C fluxes



### Validation on temperature sensitivity of C fluxes



Validation on mean C fluxes



# Validation on mean C fluxes



# Qualitative validation between resin-exchange nutrients and net mineralization



### Implication for net ecosystem exchange



Warming induces sink-to-source transition

Both parameter optimization and structural modification reduce the strength of this transition

But the mechanisms are different



Structural modification reduces autotrophic respiration

Parameter optimization reduces heterotrophic respiration

Parameter optimization increases excess respiration (XR), which is caused by nutrients limitation



Parameter optimization increases excess respiration (XR), which is caused by nutrients limitation



Parameter optimization decreases maintenance respiration (MR) by changing base rate and Q10



Parameter optimization decreases maintenance respiration by changing base rate and Q10





List of optimized parameters

# Normalized range of parameters



List of optimized parameters

# Normalized range of parameters

Structural modification causes XR to decline more from coldest to warmest chambers



Structural modification causes XR to decline more from coldest to warmest chambers



Structural modification changes the inter-PFT competition relationships on nutrient limitation



### Structural modification creates greater N limitation on soil organic matter decomposition



### Structural modification creates greater N limitation on soil organic matter decomposition



### **Nutrient uptake diagnostics**

### Percentage organic nutrients uptake via fungi is a sizeable fraction of total uptake



Spruce becomes more P-limited in the modified model, explaining the underestimation

### **Nutrient uptake diagnostics**

### New model has less defined saturation point in uptake kinetics



## Conclusions

With new implicit fungal uptake scheme, ELM-SPRUCE

- better simulates the growth of ErM-associated shrub and net mineralization response to warming
- underestimates the EcM-associated spruce tree due to P limitation
- persistent bias in the non-vascular Sphagnum moss and belowground response to warming

Structural modification changes the inter-PFT nutrients competition

- overall, reduces plant excess respiration due to N limitation in the warmest chambers
- mitigates sink-to-source transition under warming

Validation data on total nutrients uptake, fungal uptake percentages and uptake kinetics will help improve the model in the future

# Back up slides



### Validation on pore water nutrients



# Qualitative validation between resin-exchange nutrients and net mineralization



### Implication for net ecosystem exchange

Warming induces sink-to-source transition

Parameter optimization and structural modification reduces the strength of this transition



### Implication for net ecosystem exchange

### 

Structural modification reduces autotrophic respiration



Structural modificati



### Moss is accessing more P in modified model



### **Phosphorus uptake kinetics**

