

SPRUCE-MIP Overview

Multi-model comparison to understand peatland carbon and methane responses to warming and elevated CO₂.

A collaborative effort to benchmark, diagnose, and improve terrestrial model predictions.

Xiaoying Shi, Daniel Ricciuto, Yaoping Wang, Dafeng Hui, Siya Shao, Yiqi Luo, Qianlai Zhuang, Jian Zhou, Xiaofeng Xu, Hongxing He, Mousong Wu, Ayesha Hussain, Chunjing Qiu, Akihiko, Joe Melton, Qing Sun, Fortunat Joos, Xingjie Lu, Yongjiu Dai, Paul Hanson, Jiafu Mao, Natalie Griffiths, Melanie Mayes, Verity Salmon and others

May 2025 | SPRUCE All Hands Meeting

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Motivation

Why SPRUCE-MIP?

- Peatlands store ~30% of global soil carbon but occupy only ~3% of land.
- Warming and elevated CO₂ fundamentally alter CO₂ and CH₄ fluxes.
- Existing models produce divergent responses, limiting predictive confidence.
- SPRUCE-MIP enables systematic model evaluation, uncertainty diagnosis, and targeted improvements.

CAK RIDGE

Key Scientific Questions

Model Fidelity:

How well do current models reproduce observed CO₂ and CH₄ flux responses to SPRUCE warming and elevated CO₂ treatments?

Process Representation:

What process-level differences drive intermodel variability in carbon and methane flux predictions?

Uncertainty Diagnosis:

What are the dominant sources of model uncertainty, and how can they be reduced through targeted experiments or parameter refinements?

Implications for Projections:

What do model outcomes reveal about the future of peatland carbon cycling and their role in Earth system feedbacks?

3

Participating Models in SPRUCE-MIP

Model	Full Name	Affiliation (Team Contact)	Reference
CLASSIC	Canadian Land Surface Scheme Including Biogeochemical Cycles	Environment and Climate Change Canada (Joe Melton)	Melton et al. (2020)
CLM-Microbe	CLM with Microbial Processes	San Diego State University (Xiaofeng Xu)	TBD
ColM	Common Land Model	Sun Yat-Sen University (Xingji Lu)	REF (unspecified)
CoupModel	Coupled Heat and Mass Transfer Model	McGill University (Hongxing He)	Jansson and Moon (2001)
DNDC	DeNitrification-DeComposition Model	Tennessee State University (Dafeng Hui)	Li et al. (1992)
ELM-Microbe	ELM with Microbial Processes	San Diego State University (Xiaofeng Xu)	Ricciuto et al. (2021)
ELM-SPRUCE	Energy Exascale Earth System Model (ELM)	Oak Ridge National Laboratory (Xiaoying Shi)	Shi et al. (2021)
JULES	Joint UK Land Environment Simulator	University of Exeter (Ayesha Hussai)	Burke et al. (2017)
LPX-Bern	Land surface Processes and eXchanges model	University of Bern (Qing Sun/Fortunat Joos)	Spahni et al. (2013)
MWM	McGill Wetland Model	McGill University (Siya Shao)	St-Hilaire et al. (2010)
ORCHIDEE-PEAT	ORganizing Carbon and Hydrology In Dynamic Ecosystems model	East China Normal University (Chunjing Qiu)	Qiu et al. (2018, 2019)
TECO-SPRUCE	Terrestrial ECOsystem Model	Cornell University (Yiqi Luo)	Weng and Luo (2008), Huang et al. (2017)
PTEM	Peatland Terrestrial Ecosystem Model	Purdue University (Qianlai Zhuang)	Zhuang et al. (2003), Zhao et al. (2022)
VISIT	Vegetation Integrative Simulator for Trace Gases	University of Tokyo (Akihiko Ito)	Ito and Inatomi (2012)

Key Process Representations Across Participating Models

Experimental Design

Model Forcing and Simulation Protocol

Spin-up: Models initialized using ambient plot atmospheric forcing (2015-2021) under pre-industrial conditions.

Transient run: Historical simulation from 1850 to 2014 using historical meteorological and CO₂ data.

Experiment Phase

From 2015 to 2021, all models run 11 simulations using plot-specific meteorological forcing and CO₂ concentrations:

- 1 ambient plot
- 10 treatment plots (warming and/ aCO_2 or elevated CO_2)

Evaluation

Model outputs (e.g., NEE and other components) will be compared with SPRUCE plot-level observations.

SPRUCE Simulation Matrix: Warming and CO₂ Treatments

Simulation	Warming	CO_2 concentration
CTL	ambient	ambient
Warming+0	+0 °C	ambient
Warming+2.25	+2.25 °C	ambient
Warming+4.50	+4.50 °C	ambient
Warming+6.75	+6.75 °C	ambient
Warming+9.00	+9.00 °C	ambient
Warming+0+CO ₂	+0 °C	900ppm
Warming+2.25+CO ₂	+2.25 °C	900ppm
Warming+4.50+CO ₂	+4.50 °C	900ppm
Warming+6.75+CO ₂	+6.75 °C	900ppm
Warming+9.00+CO ₂	+9.00 °C	900ppm

CAK RIDGE

Observed Plot-Level Temperature Response to SPRUCE Treatments (2015–2021)

Boxplots show annual mean temperatures from each of the 11 SPRUCE plots, capturing 7year means and variability under ambient vs. elevated CO₂ and across five warming levels. Numbers above each box indicate the 7-year average temperature.

Observed and Simulated NEE Across Models: +0 °C vs. +9°C Warming

Consistent sources: CoupModel, MWM, PTEM simulate positive NEE (carbon loss) under both +0 and +9 °C conditions. **Sink-to-source transitions**: CLASSIC, CLM-Microbe, CoLM, ELM-SPRUCE, JULES transition from net sink to source with warming across both CO₂ treatments.

CO₂-dependent transitions: DNDC, ORCHIDEE, VISIT switch to sources under aCO₂ but remain sinks under eCO₂. **Persistent sinks**: ELM-Microbe, LPX-Bern, TECO retain sink behavior under all conditions.

National Laboratory

Observed and Simulated NPP Across Models: +0°C vs. +9°C Warming

Best match: CLM-Microbe and model mean

Underpredicting models: CLASSIC, CoupModel, ELM-SPRUCE, MWM, ORCHIDEE, PTEM Overpredicting models: CoLM, DNDC, ELM-Microbe, JULES, TECO, VISIT Strong eCO₂ response: ORCHIDEE, VISIT, ELM-Microbe, DNDC +9 °C effect: Most models simulate declining NPP under warming

CAK RIDGE

0

Observed and Simulated HR Across Models: 0°C vs. +9°C Warming

Underpredicting models: CLASSIC, DNDC, ELM-SPRUCE, MWM, ORCHIDEE Overpredicting models: CoLM, ELM-Microbe, JULES, LPX-Bern, TECO Strong eCO2 sensitivity: MWM, ELM-Microbe, ORCHIDEE, TECO Warming effect: Most models simulate increased HR under +9 °C warming

CAK RIDGE

Observed and Simulated CH₄ Across Models: +0°C vs. +9°C Warming

Best match: VISIT aligns closely with observations Underpredicting models: LPX-Bern, ELM-SPRUCE Overpredicting models: CLM-Microbe, DNDC, ELM-Microbe, PTEM, TECO Strong eCO₂ sensitivity: CLM-Microbe (+81%), TECO (+29%), ELM-SPRUCE (+18%), PTEM (+14%) Warming effect: Most models simulate increased CH₄ emissions under +9 °C, consistent with observations

CAK RID National Labora

Observed and Simulated NEE Sensitivity to Temperature

Most models show positive NEE sensitivity (warming increases net carbon loss). Largest responses from DNDC, CoupModel, MWM.

National Ladoratory

Observed and Simulated NPP Sensitivity to Temperature

Observed NPP turns positive under eCO₂ with warming, but most models show negative sensitivity. CAK RIDC

Soak RIDC Observed HR increases with temperature. Majority of models reproduce this, but a few show declining HR.

15

Observed and Simulated CH4 Sensitivity to Temperature

COAK RIDC Observed CH4 emissions rise with temperature. Only some models reflect this trend; others are near-zero.

Summary of Key SPRUCE-MIP Findings

•Consistent sources: CoupModel, MWM, PTEM simulate carbon loss (NEE > 0) across all the warming and CO_2 conditions

•Sink-to-source transitions: CLASSIC, CLM-Microbe, CoLM, ELM-SPRUCE,

JULES transition from sink to source under warming and both CO_2 conditions

•CO₂-dependent transitions: DNDC, ORCHIDEE, VISIT become sources under aCO₂, remain sinks under eCO₂

•Persistent sinks: ELM-Microbe, LPX-Bern, TECO remain carbon sinks under all scenarios

Process Diagnostics:

•NPP: Declines in most models with warming; observations suggest recovery

•HR: Increases with temperature in most models, consistent with data

•CH₄: Few models (e.g., PTEM, TECO, CLASSIC) replicate observed CH₄ response to warming

Takeaway: Model divergence in NEE pathways and process sensitivities underscores the need for improved representation of peatland carbon processes.

OAK RIDGE

SPRUCE-MIP: Next Steps

- The SPRUCE-MIP synthesis paper is nearly complete and is targeted to submit for journal publication this summer.
- Other interesting topic papers are encouraged to be started such as nutrient cycling, Sphagnum dynamics, CH_4 dynamics.
- A SPRUCE-focused international peatland workshop is planned for Fall 2025, bringing together both empirical and modeling communities.
- The MIP will initiate new simulation phases, including:
 - Extending the model intercomparison to multiple peatland sites
 - Forcing models with downscaled ESM climate projections, and

- Exploring additional experimental treatments, such as water table drawdown and nutrient additions.

Acknowledgments

- SPRUCE experimental team and data providers
- Modeling teams
- Coordinators: Xiaoying Shi, Daniel Ricciuto, and collaborators Contant email: <u>shix@ornl.gov;</u> ricciutodm@ornl.gov

Thank you for your attention!

