Modeling hydraulic failure of spruce and larch

Yanjun Song¹, Alexandria Pivovaroff², Nicolas K Martin-StPaul³, Hervé Cochard⁴, Jeffrey M. Warren⁵, Paul J. Hanson⁵, Nate G. McDowell^{1,6} ¹School of Biological Sciences, Washington State University, WA, USA ²Biology Department, Occidental College, CA, USA ³INRAE, UEFP, Avignon, 84914, France ⁴Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France

⁵Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁶Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Lab, USA

Background: Hydraulic failure—defined as the loss of water transport capacity due to embolism in xylem conduits—is a key mechanism driving tree mortality under global warming. Yet, the combined effects of warming and elevated CO_2 (e CO_2) remain largely untested in boreal peatland conifer species. Here, we modelled mortality risk using the PLC (percentage loss of hydraulic conductivity) within the Ecosystem Experiment.

Question: How will elevated CO_2 (eCO₂) and warming influence mortality in boreal peatland conifer species?

Hypothesis: eCO_2 is expected to reduce tree mortality, whereas warming is expected to increase it.

Method:

- A hydraulic-process based model (SurEau) integrating vegetation traits from root to crown, soil hydraulics, stand parameters and climate data.
- Sapfow data is perfect data for benchmarking

Stem hydraulic traits Soil parameters K_{soil}, g_{soil}, soil water storage

Results I: Model validation

- High VPD increased gas exchange in both species, water transport in larch.
- High VPD decreased water-use efficiency in larch due to its anisohydric strategy.
- Spruce maintained higher hydraulic safety margin than larch due to its isohydric strategy.

Do the divergent species differ in mortality ?

Results II: Modelled mortality risk

Fig.6 Modelled results of daily PLC (percentage loss of hydraulic conductivity) from 2019 to 2021. Higher PLC values indicate greater mortality risk.

Take home messages

- Both larch and spruce maintained low PLC values and survived well under rising VPD, although the increased VPD led to higher PLC in spruce.

• Elevated CO_2 increased mortality risk in larch, despite PLC remaining below 20%.

• Boreal peatland species can maintain both high growth and low mortality risk at the same time.

Acknowledgements: The SPRUCE project is funded by the Biological and Environmental Research Program in the Office of Science, U.S. Department of Energy managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DEAC05-00OR22725. Y.S., A.P. and N.M. acknowledge funding from National Science Foundation (NSF) Grant IOS-2220865. P.B.R. was supported by Biological Integration Institutes award NSF-DBI-2021898.