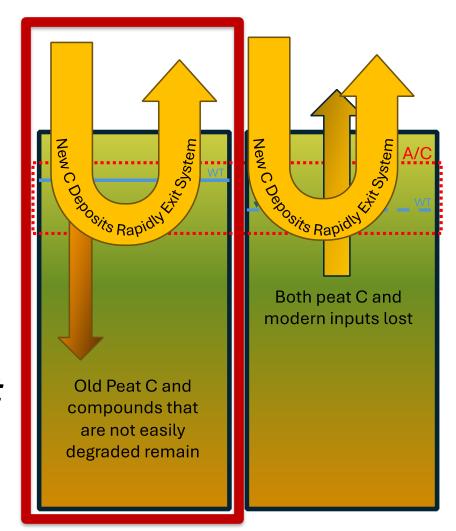
¹⁴C and ¹³C of emitted CO₂ and CH₄ and peat at SPRUCE


Karis McFarlane^{1*}, Alexandra Hedgpeth^{1,2}, Geoff Schwaner³, Jana Phillips³, and Paul J. Hanson³

¹Lawrence Livermore National Laboratory; ²University of California–Los Angeles; ³Oak Ridge National Laboratory

Summary and Implications

- 1. eCO₂ treatments deplete Δ^{14} C and δ^{13} C of emitted CO₂ and CH₄ as well as in shallow peat.
- 2. Little evidence for increased use of old peat C with warming
- 3. Warming increases $\delta^{13}\mathrm{C}$ of $\mathrm{CH_4}$

Increased carbon emissions with warming result from faster cycling of recently fixed carbon, not older peat.

