¹⁴C and ¹³C of emitted CO₂ and CH₄ and peat at SPRUCE Karis McFarlane^{1*}, Alexandra Hedgpeth^{1,2}, Geoff Schwaner³, Jana Phillips³, and Paul J. Hanson³ ¹Lawrence Livermore National Laboratory; ²University of California–Los Angeles; ³Oak Ridge National Laboratory

Background

- Natural wetlands release approximately one-third of global CH₄ emissions to the atmosphere.
- Northern peatlands cover < 3% of the Earth's surface, but contain 550 Pg of carbon (> 20% of carbon stored on land)
- Changes in climate could result in favorable conditions for microbial decomposition and release of old peat carbon as CO_2 or CH_4 .
- Predictions of future peatland carbon fluxes are challenged by inadequate understanding and data required for model development.

Results: Treatment Enclosure Air Isotopes

Fig 3. δ^{13} C and Δ^{14} C of CO₂ in air samples collected from ~2 m height at the center of the 10 treatment enclosures. Plots 7, 21, and met station not shown.

- Under ambient CO₂, δ^{13} C and Δ^{14} C of CO₂ decline with warming (p = 0.01)
- eCO₂ decreases both isotopes (eCO₂ is from fossil fuel)

Results: Peat Elevation and Carbon Stocks

Fig 6. Elevation change relative to 2015

Fig 7. Peat SOC stocks in 2012 and 2020

- Elevation loss makes in warmed plots makes comparing peat characteristics challenging (Fig. 5), approaches to account for elevation changes are currently being evaluated.
- Here, we combine depth increments into shallow (0-40 cm), middle (40-100 cm), and deep (100-200 cm) depth (Fig 6). Across treatments, peat carbon stock has increased in most plots from 2012 (pre-

Fig 1. Wetland carbon balance results from interacting processes.

Will peatland response to a warmer climate include increased release of old carbon to the atmosphere???

SPRUCE Experiment

- Southern boreal, weakly ombrotrophic, *Picea mariana/Sphagnum* bog
- MAT = 3.4°C, MAP = 780 mm
- Whole ecosystem warming: + 0, 2.25, 4.5, 6.75, 9 °C
- eCO₂: 400, 900 ppm CO₂

Results: Surface Emitted Carbon Isotopes

- 2021 was a drought year, limiting CH₄ isotope data
- δ^{13} C of CO₂ shows no relationship with temperature under ambient CO₂ Fig 4. Water Table Depth

Fig 5. δ^{13} C of CO₂ and CH₄ from surface flux chambers

- δ^{13} C of CO₂ shows no relationship with temperature under ambient CO₂
- δ^{13} C of CO₂ may be increasing with increasing temperature under elevated CO_2 (p = 0.08, R² = 0.2)
- δ^{13} C of CH₄ increases with increasing temperature regardless of CO₂ treatment (p = 0.01, $R^2 = 0.1$)
- eCO₂ decreases δ^{13} C, but less strongly for CH₄

treatment) to 2020, with this increase mainly attributed to deep (100-200 cm) peat (p < 0.05).

Results: ¹³C and ¹⁴C of peat

Fig 8. Bulk peat Δ^{14} C and δ^{13} C for ambient and elevated CO₂ plots in 2020.

Surface peat shows incorporation of eCO₂ signal

• Clear isotopic depletion after 4 years of eCO₂ fumigation in the top 20 cm of peat (Fig. 7), but heating effects are more subtle.

Summary and Implications

20

- 1. We found little evidence for increased use of old peat carbon after short-term warming, consistent with other research at SPRUCE.
- 2. Isotopically depleted eCO₂ treatments deplete Δ^{14} C and δ^{13} C of emitted CO_2 and CH_4 as well as in shallow peat.

Fig 2. SPRUCE experimental infrastructure.

Approach

We seek to link subsurface processes to surface fluxes at SPRUCE with Δ^{14} C and δ^{13} C of:

- 1. Air collected from inside the experimental enclosures (plus 2 unchambered plots and a Met station at the bog outlet).
- 2. Surface-emitted CH_4 and CO_2 end-members derived with Keeling plots or isotopic mixing models correcting for background values (Table 1)
- 3. Bulk peat sampled in 2012 (pre-treatment) and 2020 (after 5 years of warming and 4 years of eCO_2)

- Emitted CH_4 and CO_2 is young, with little evidence of mobilization of old peat with warming
- eCO₂ decreases Δ^{14} C quickly for CO₂ than CH₄ and less strongly in warmer plots for CO₂

3. Warming increases δ^{13} C of CH₄, possibly reflecting increased methane oxidation or shifts in methanogenesis pathways.

Increased carbon emissions with warming result from faster cycling of recently fixed carbon, not older peat (Scenario 1).

Table 1. Timelines for treatments and surface flux sampling

Fig 9. Conceptual model of hypothesized SPRUCE treatment effects on peat C storage and cycling

	2015					2016			2021	2023		
PRE- TRT	DEEP PEAT HEATING ONLY						WHOLE ECOSYSTEM WARMING			eCO ₂ + WARMING		
June	July	Aug	Apr	May	June	July	Aug	May	June	July	July	July

Office of

