

Elevated CO₂ alleviates positive feedback between warming and methane emissions in a peatland

Weinan Chen, Avni Malhotra, Paul J. Hanson, Jian Zhou, Lifen Jiang, Yiqi Luo* College of Agriculture and Life Sciences, Cornell University, Ithaca, USA

□ Question: How do plant–microbe feedbacks regulate responses of peatland methane emissions to warming and eCO₂?

Methods

CH₄ flux: large-collar chamber CO₂: aCO₂, eCO₂ (+500 ppm) Whole ecosystem warming: +0, +2.25, +4.5, +6.75 and +9 °C

Key findings

Elevated CO₂ combined with warming reduced peatland CH₄ emissions but depend on fineroot length productivity.

Potential mechanism

Root traits modulate methane's response to global change by influencing soil redox conditions, which in turn regulate rhizosphere CH₄ oxidation processes.