

Elevated CO₂ alleviates positive feedback between warming and methane emissions in a peatland ECOLAB

Weinan Chen, Avni Malhotra, Paul J. Hanson, Jian Zhou, Lifen Jiang, Yiqi Luo* College of Agriculture and Life Sciences, Cornell University, Ithaca, USA

Motivation

of dr. YIQI LUO

Methane (CH4) is one of the most important greenhouse gases (GHGs) whose warming impact is second only after carbon dioxide (CO2). Peatlands are one of the largest natural sources for atmospheric CH4. However, large uncertainties exist in predicting responses of peatland CH4 fluxes to future climate change. Especially, responses of peatland CH₄ emissions to warming and elevated CO₂ and its interactions with plants still remain unclear.

Methods

Here we used SPRUCE large-collar In Situ CH₄ flux data across five warming levels (+0, +2.25, +4.5, +6.75, and +9 °C) belowground since 2014 and aboveground since 2015, each under two CO₂ levels (+0 and +500 ppm) since 2016.

Fine-root length productivity data used in this study were measured by the ingrowth core approach during growing season for 2016, 2017 from Malhotra et al. (2020).

Fine-root length productivity in different warming Figure 3 treatments with and without elevated CO₂

No. 25

Warming effects here were calculated as the difference between methane emissions from warming treatment and ambient; CO₂ effects were calculated as the difference between methane emissions from elevated CO₂ and ambient under the same warming treatment.

SPRUCE experiment

Large-collar chamber observation systems on CO₂ and CH₄ fluxes

Warming treatment (°C)

methane flux under on different warming treatments with without **CO**₂; and Warming effects here were calculated as the difference between methane emissions from warming treatment and ambient

The relationship between CO₂ effects on CH₄ emission and shrub fine-root CO_2 effects were calculated as the difference between methane emissions from elevated CO₂ and ambient under the same

Results

Figure 1 | CH₄ emissions in different warming treatment with

and without elevated CO₂

CH₄ emissions under Ambient versus Figure 2 elevated CO₂ during growing season and nongrowing season across different warming treatments

Acknowledgement

Take home messages:

- Elevated CO₂ combined with warming reduced methane emissions under warming, only during the growing season;
- Elevated CO₂ mitigates the magnitude of warming effects increasing with the warming gradients;
- Shrub fine-roots seem to play a dominant role in mediating the effects of eCO₂ on methane emissions;

Contact information: wc675@cornell.edu

influencing soil redox conditions, which in turn regulate rhizosphere methane

oxidation processes.