Publications

Search
Show only items where
Found 37 results
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is K  [Clear All Filters]
Journal Article
Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM et al..  2017.  Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences. 14:861-883.
Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK.  2015.  Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biology and Biochemistry. 86:34-41.
Krassovski M.B, Riggs J.S, Hook L.A, Nettles W.R, Hanson PJ, Boden T.A.  2015.  A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 4(2):203-213.
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, W. Nettles R, Heiderman RR et al..  2018.  Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560:371.
Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ.  2018.  Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424:123–143.
Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CPJ.  2017.  Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154:247-259.
Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CPJ.  2017.  Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154:247-259.
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CMedvedeff, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L et al..  2017.  Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22-32.
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CMedvedeff, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L et al..  2017.  Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22-32.
Hanson PJ, Gill A.L, Xu X., Phillips J.R, Weston D.J, Kolka R.K, Riggs J.S, Hook L.A.  2016.  Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255-272.
Fernandez CW, Heckman K, Kolka R, Kennedy PG.  2019.  Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology Letters. 22(3):498-505.
Fernandez CW, Heckman K, Kolka R, Kennedy PG.  2019.  Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology Letters. 22(3):498-505.
Fernandez CW, Heckman K, Kolka R, Kennedy PG.  2019.  Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology Letters. 22(3):498-505.
Zalman CA, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK.  2018.  Methylotrophic methanogenesis in Sphagnum -dominated peatland soils. Soil Biology and Biochemistry. 118:156-160.
Zalman CA, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK.  2018.  Methylotrophic methanogenesis in Sphagnum -dominated peatland soils. Soil Biology and Biochemistry. 118:156-160.
Lin X., Tfaily M.M, Steinweg J.M, Chanton P., Esson K., Yang Z.K, Chanton J.P, Cooper W., Schadt C.W, Kostka J.E.  2014.  Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology. 80(11):3518-3530.
Lin X., Tfaily M.M, Green S.J, Steinweg J.M, Chanton P., Imvittaya A., Chanton J.P, Cooper W., Schadt C., Kostka J.E.  2014.  Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Applied and Environmental Microbiology. 80(11):3531-3540.
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston D.J., Schadt CW, Kostka JE et al..  2017.  Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. [collaborator contribution]. Applied and Environmental Microbiology. 83:e01174-17.
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston D.J., Schadt CW, Kostka JE et al..  2017.  Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. [collaborator contribution]. Applied and Environmental Microbiology. 83:e01174-17.
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston D.J., Schadt CW, Kostka JE et al..  2017.  Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. [collaborator contribution]. Applied and Environmental Microbiology. 83:e01174-17.
Krassovski MB, Lyon GE, Riggs JS, Hanson PJ.  2018.  Near-real-time environmental monitoring and large-volume data collection over slow communication links. Geoscientific Instrumentation, Methods and Data Systems. 7(4):289-295.
Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP.  2014.  Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119:661–675.
Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC et al..  2020.  Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3)
McPartland MY, Kane ES, Falkowski MJ, Kolka R, Turetsky MR, Palik B, Montgomery RA.  2019.  The response of boreal peatland community composition and NDVI to hydrologic change, warming and elevated carbon dioxide. Global Change Biology. 25(1):93-107.
McPartland MY, Kane ES, Falkowski MJ, Kolka R, Turetsky MR, Palik B, Montgomery RA.  2019.  The response of boreal peatland community composition and NDVI to hydrologic change, warming and elevated carbon dioxide. Global Change Biology. 25(1):93-107.