Skip to main content
U.S. flag

An official website of the United States government

David Weston

Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
Turetsky MR, Weston DJ, Cox W, Petro C, Shaw A. 2025. The challenging but unique eco-evolutionary aspects of Sphagnum moss. . New Phytologist. In press . doi:10.1111/nph.70233.
Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.
DeWitt K, Carrell AA, Rocca JD, Votzke S, Yammine A, Peralta A, Weston DJ, Pelletier DA, Gilbert J. 2025. Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community. . mSphere.
Denison E, Pound H, Gann E, Gilbert N, Weston DJ, Pelletier DA, Wilhelm S. 2025. Identification of shared viral sequences in peat moss metagenomes reveals elements of a possible Sphagnum core virome. . Environmental Microbiome. 20(1):1–6. doi:10.1186/s40793-025-00719-0.
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
Norby RJ, Živković T, Weston DJ, Baxter T. 2023. Shading contributes to Sphagnum decline in response to warming. Ecology and Evolution . 13:10542. doi:10.1002/ece3.10542.
Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.

Participant Information

Publications

2025

  1. Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
  2. Denison E, Pound H, Gann E, Gilbert N, Weston DJ, Pelletier DA, Wilhelm S. 2025. Identification of shared viral sequences in peat moss metagenomes reveals elements of a possible Sphagnum core virome. . Environmental Microbiome. 20(1):1–6. doi:10.1186/s40793-025-00719-0.
  3. DeWitt K, Carrell AA, Rocca JD, Votzke S, Yammine A, Peralta A, Weston DJ, Pelletier DA, Gilbert J. 2025. Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community. . mSphere.
  4. Turetsky MR, Weston DJ, Cox W, Petro C, Shaw A. 2025. The challenging but unique eco-evolutionary aspects of Sphagnum moss. . New Phytologist. In press . doi:10.1111/nph.70233.

2024

  1. Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
  2. Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.

2023

  1. Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
  2. Norby RJ, Živković T, Weston DJ, Baxter T. 2023. Shading contributes to Sphagnum decline in response to warming. Ecology and Evolution . 13:10542. doi:10.1002/ece3.10542.

2022

  1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
  2. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.

2021

  1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. 2021. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 18(2):467–486. doi:10.5194/bg-18-467-2021.
  2. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  3. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  4. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.

2020

  1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. 2020. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020:1–49. doi:10.5194/bg-2020-90.

2019

  1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 25(9):2993–3004. doi:10.1111/gcb.14715.

2017

  1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. 2017. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 122(5):1078–1097. doi:10.1002/2016jg003711.
  2. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 83(17). doi:10.1128/aem.01174-17.
  3. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. 2017. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 81(6):1668–1688. doi:10.2136/sssaj2016.12.0422.

2016

  1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. 2016. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255–272. doi:10.1007/s10533-016-0230-8.
  2. Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. 2016. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier. pp. 167–187.
  3. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. 2016. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 211(1):57–64. doi:10.1111/nph.13993.

2014

  1. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. 2014. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 7(2):260–262. doi:10.4161/psb.18802.
  2. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. 2014. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 38(9):1737–1751. doi:10.1111/pce.12458.

mnspruce.ornl.gov

An official website of the U.S. Department of Energy and the USDA Forest Service

Looking for U.S. government information and services?
Visit USA.gov