Skip to main content
U.S. flag

An official website of the United States government

Publications by Author

Guilliams, M.P.

  • Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.

Gunderson, Carla

  • Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. 2012. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x.

Gutknech, Jessica

  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.

Hall, Steven

  • Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. 2021. Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands. Ecosystems. 25(1):44–60. doi:10.1007/s10021-021-00639-3.

Hanson, Paul

  • Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
  • Ofiti NOE, Schmidt MWI, Abiven S, Hanson PJ, Iversen CM, Wilson RM, Kostka JE, Wiesenberg GLB, Malhotra A. 2023. Climate warming and elevated CO2 alter peatland soil carbon sources and stability. Nature Communications . 14:7533. doi:10.1038/s41467-023-43410-z.
  • Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. 2017. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 81(6):1668–1688. doi:10.2136/sssaj2016.12.0422.
  • Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. 2020. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3). doi:10.1029/2020av000163.
  • Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. 2013. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. doi:10.1115/imece2012-86352.
  • Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. 2015. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 4(2):203–213. doi:10.5194/gi-4-203-2015.
  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
  • Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
  • Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. 2021. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 27(13):3079–3094. doi:10.1111/gcb.15620.
  • Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. 2019. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 12(4):1601–1612. doi:10.5194/gmd-12-1601-2019.
  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
  • Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 14(4):861–883. doi:10.5194/bg-14-861-2017.
  • Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
  • Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. 2017. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 122(8):2046–2063. doi:10.1002/2016jg003725.
  • Richardson AD, Novick K, Basler DD, Phillips JR, Krassovski MB, Warren JM, Sebestyen SD, Hanson PJ. 2024. Experimental whole‐ecosystem warming enables novel estimation of snow cover and depth sensitivities to temperature, and quantification of the snow‐albedo feedback effect. Journal of Geophysical Research – Biogeosciences . 129:2023JG007833. doi:10.1029/2023JG007833.
  • Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, et al. 2024. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. . Plant, Cell & Environment. 47(12):4886–4902. doi:10.1111/pce.15068.
  • Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119(4):661–675. doi:10.1002/2013jg002492.
  • Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. 2014. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 7(2):260–262. doi:10.4161/psb.18802.
  • Barreto C, Conceicão PH, de Lima E, Stievano L, Zeppelini D, Kolka RK, Hanson PJ, Lindo Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science . 11:1153683. doi:10.3389/fenvs.2023.1153683 .
  • Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. 2017. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 122(5):1078–1097. doi:10.1002/2016jg003711.
  • Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.
  • Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD. 2010. A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology. 150(3):497–498. doi:10.1016/j.agrformet.2009.11.020.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
  • Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. 2016. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255–272. doi:10.1007/s10533-016-0230-8.
  • Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. 2012. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x.
  • Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. 2020. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020:1–49. doi:10.5194/bg-2020-90.
  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
  • Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
  • Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. 2015. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 116(5):821–832. doi:10.1093/aob/mcv115.
  • Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
  • Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. 2011. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 108(1-3):91–107. doi:10.1007/s10533-011-9575-1.
  • Richardson AD, Schadel C, Westergaard-Nielsen A, Novick K, Basler DD, Phillips JR, Krassovski MB, Warren JM, Sebestyen SD, Hanson PJ. 2024. Experimental whole-ecosystem warming enables novel estimation of snow cover and depth sensitivities to temperature, and quantification of the snow-albedo feedback effect. JGR Biogeosciences. 129(3):1–19. doi:10.1029/2023JG007833.
  • Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 1(2):575–582. doi:10.5194/soil-1-575-2015.
  • Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. 2017. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424(1-2):123–143. doi:10.1007/s11104-017-3231-z.
  • Roth S, Griffiths NA, Oleheiser KC, Carrell AA, Klingeman D, Seibert A, Chanton JP, Hanson PJ, Schadt CW. 2023. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. . mSystems . 8:00337–23. doi:10.1128/msystems.00337-23.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. 2021. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 603:127137. doi:10.1016/j.jhydrol.2021.127137.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. 2020. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 15(12):124066. doi:10.1088/1748-9326/abc4fb.
  • Krassovski MB, Lyon GE, Riggs JS, Hanson PJ. 2018. Near-real-time environmental monitoring and large-volume data collection over slow communication links. Geoscientific Instrumentation, Methods and Data Systems. 7(4):289–295. doi:10.5194/gi-7-289-2018.
  • Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist . 244:1333–1347. doi:10.1111/nph.19690.
  • Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. 2019. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 12(3):1119–1137. doi:10.5194/gmd-12-1119-2019.
  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560(7718):368–371. doi:10.1038/s41586-018-0399-1.
  • Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 14(9):2481–2494. doi:10.5194/bg-14-2481-2017.
  • Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
  • Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. 2012. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 76(5):1911–1918. doi:10.2136/sssaj2012.0040.
  • Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. 2018. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 123(2):479–494. doi:10.1002/2017jg004007.
  • Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. 2021. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 28(3):883–898. doi:10.1111/gcb.15955.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Schadel C, Seyednasrollah B, Hanson PJ, Hufkens K, Pearson K, Warren MJ, Richardson AD. 2023. Using long-term data from a whole ecosystem warming experiment to identify best spring and autumn phenology models. Plant Environment Interactions . 4:188–200. doi:10.1002/pei3.10118.
  • Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 12(21):6463–6477. doi:10.5194/bg-12-6463-2015.
  • Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. 2022. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 17(3):e0263994. doi:10.1371/journal.pone.0263994.
  • Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2020jg005963.
  • Ofiti NOE, Altermatt M, Petibon F, Warren JM, Malhotra A, Hanson PJ, Wiesenberg GLB. 2023. Warming and elevated CO2 induced shifts in carbon partitioning and lipid composition within an ombrotrophic bog plant community. Environmental and Experimental Botany . 206:105182. doi:10.1016/j.envexpbot.2022.105182.
  • Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. 2019. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 39(4):556–572. doi:10.1093/treephys/tpy140.
  • Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. 2019. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2. doi:10.3389/ffgc.2019.00054.
  • Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. 2011. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x.
  • Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
  • Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist. 242:1333–1347. doi:10.1111/nph.19690.
  • Norby RJ, Childs J, Hanson PJ, Warren JM. 2019. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution. 9(22):12571–12585. doi:10.1002/ece3.5722.
  • Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. 2018. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 123(3):1057–1071. doi:10.1002/2017jg004040.
  • Ofiti NOE, Huguet A, Hanson PJ, Wiesenberg GLB. 2024. Peatland warming influences the abundance and distribution of branched tetraether lipids: Implications for temperature reconstruction. . Science of the Total Environment . doi:10.1016/j.scitotenv.2024.171666.
  • Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. 2021. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 18(2):467–486. doi:10.5194/bg-18-467-2021.
  • Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. 2020. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 15(2):e0223744. doi:10.1371/journal.pone.0223744.
  • Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. 2021. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 27(9):1820–1835. doi:10.1111/gcb.15543.
  • Hanson PJ, Walker AP. 2019. Advancing global change biology through experimental manipulations: Where have we been and where might we go?. Global Change Biology. 26(1):287–299. doi:10.1111/gcb.14894.
  • Graham JD, Ricciuto DM, Glenn NF, Hanson PJ. 2022. Incorporating Microtopography in a Land Surface Model and Quantifying the Effect on the Carbon Cycle. Journal of Advances in Modeling Earth Systems. 14(2). doi:10.1029/2021ms002721.
  • Hough M, Ma S, Huang Y, Zhou Y, Kim H-S, Lopez-Blanc E, Jiang L, Xia J, Tao F, Williams C, et al. 2023. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. . Global Change Biology. 29:2759–2775. doi:10.1111/gcb.16643.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • Graham JD, Glenn NF, Spaete LP, Hanson PJ. 2020. Characterizing Peatland Microtopography Using Gradient and Microform-Based Approaches. Ecosystems. 23(7):1464–1480. doi:10.1007/s10021-020-00481-z.
  • Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Villanueva R, Cruz M, McLennan DA, King AW, et al. 2023. Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures. Nature Communications. 14:4667. doi:10.1038/s41467-023-40248-3.
  • Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. 2018. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 105(2):266–274. doi:10.1002/ajb2.1022.

Hattakka, J.

  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Haynes, Kristine

  • Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. 2017. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154:247–259. doi:10.1016/j.atmosenv.2017.01.049.

He, C

  • Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.

Heckman, Katherine

  • Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. 2021. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 234(6):2032–2043. doi:10.1111/nph.17755.
  • Fernandez CW, Heckman K, Kolka RK, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 22(3):498–505. doi:10.1111/ele.13209.

Heiderman, Ryan

  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560(7718):368–371. doi:10.1038/s41586-018-0399-1.

Helbig, M.

  • Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Helfter, C.

  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Hendershot, Nicholas

  • Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. 2020. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 15(2):e0223744. doi:10.1371/journal.pone.0223744.

Heyman, Heino

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.

Hickey, S

  • Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.

Hicks Pries, Caitlin

  • Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 1(2):575–582. doi:10.5194/soil-1-575-2015.

Hines, Mark

  • Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.

Hirano, T.

  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Hobbie, Erik

  • Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
  • Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 14(9):2481–2494. doi:10.5194/bg-14-2481-2017.

Hofmockel, Kirsten

  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 14(9):2481–2494. doi:10.5194/bg-14-2481-2017.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.

Hook, Leslie

  • Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 14(4):861–883. doi:10.5194/bg-14-861-2017.
  • Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. 2016. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255–272. doi:10.1007/s10533-016-0230-8.
  • Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. 2015. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 4(2):203–213. doi:10.5194/gi-4-203-2015.

Hopple, Anya

  • Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
  • Barney M, Hopple AM, Gregory L, Keller JK, Bridgham SD. 2024. Anaerobic oxidation of methane mitigates net methane production and responds to long-term experimental warming in a northern bog. Soil Biology and Biochemistry. 190:109316. doi:10.1016/j.soilbio.2024.109316.
  • Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.

Hough, Moira

  • Hough M, Ma S, Huang Y, Zhou Y, Kim H-S, Lopez-Blanc E, Jiang L, Xia J, Tao F, Williams C, et al. 2023. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. . Global Change Biology. 29:2759–2775. doi:10.1111/gcb.16643.
  • Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.

Hoyt, David

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.

Huang, Yuanyuan

  • Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. 2017. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 122(8):2046–2063. doi:10.1002/2016jg003725.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
  • Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. 2019. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 12(3):1119–1137. doi:10.5194/gmd-12-1119-2019.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Hough M, Ma S, Huang Y, Zhou Y, Kim H-S, Lopez-Blanc E, Jiang L, Xia J, Tao F, Williams C, et al. 2023. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. . Global Change Biology. 29:2759–2775. doi:10.1111/gcb.16643.
  • Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. 2018. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 123(3):1057–1071. doi:10.1002/2017jg004040.

Hufkens, Koen

  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560(7718):368–371. doi:10.1038/s41586-018-0399-1.
  • Schadel C, Seyednasrollah B, Hanson PJ, Hufkens K, Pearson K, Warren MJ, Richardson AD. 2023. Using long-term data from a whole ecosystem warming experiment to identify best spring and autumn phenology models. Plant Environment Interactions . 4:188–200. doi:10.1002/pei3.10118.

Huguet, A

  • Ofiti NOE, Huguet A, Hanson PJ, Wiesenberg GLB. 2024. Peatland warming influences the abundance and distribution of branched tetraether lipids: Implications for temperature reconstruction. . Science of the Total Environment . doi:10.1016/j.scitotenv.2024.171666.

Hui, Dafeng

  • Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. 2022. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 17(3):e0263994. doi:10.1371/journal.pone.0263994.

Humphreys, E.

  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Imvittaya, Aopeau

  • Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3531–3540. doi:10.1128/aem.00206-14.

Iversen, Colleen

  • Ofiti NOE, Schmidt MWI, Abiven S, Hanson PJ, Iversen CM, Wilson RM, Kostka JE, Wiesenberg GLB, Malhotra A. 2023. Climate warming and elevated CO2 alter peatland soil carbon sources and stability. Nature Communications . 14:7533. doi:10.1038/s41467-023-43410-z.
  • Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. 2021. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2022(1). doi:10.1111/oik.08584.
  • Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. 2017. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 81(6):1668–1688. doi:10.2136/sssaj2016.12.0422.
  • Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. 2020. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3). doi:10.1029/2020av000163.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
  • Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
  • Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. 2017. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424(1-2):123–143. doi:10.1007/s11104-017-3231-z.
  • Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119(4):661–675. doi:10.1002/2013jg002492.
  • Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist . 244:1333–1347. doi:10.1111/nph.19690.
  • Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 14(9):2481–2494. doi:10.5194/bg-14-2481-2017.
  • Seethepalli A, Ottley C, Childs J, Cope K, Fine A, Lagergren J, Kalluri U, Iversen CM, York L. 2024. Divide and conquer: Using RhizoVision Explorer to aggregate data from multiple root scans using image concatenation and statistical methods. New Phytologist . 244:5, 2101–2108. doi:10.1111/nph.20151.
  • Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 25(9):2993–3004. doi:10.1111/gcb.14715.
  • Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
  • Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist. 242:1333–1347. doi:10.1111/nph.19690.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.

Janssens, Ivan

  • Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 1(2):575–582. doi:10.5194/soil-1-575-2015.

Jardine, Phillip

  • Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. 2011. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 108(1-3):91–107. doi:10.1007/s10533-011-9575-1.

Jawdy, Sara

  • Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
  • Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.

Jekabson, Eriks

  • Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. 2013. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. doi:10.1115/imece2012-86352.

Jensen, Anna

  • Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. 2017. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 81(6):1668–1688. doi:10.2136/sssaj2016.12.0422.
  • Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. 2021. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 3. doi:10.3389/ffgc.2020.601046.
  • Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. 2015. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 116(5):821–832. doi:10.1093/aob/mcv115.
  • Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. 2019. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 39(4):556–572. doi:10.1093/treephys/tpy140.
  • Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. 2021. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 27(9):1820–1835. doi:10.1111/gcb.15543.

Jiang, Jiang

  • Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. 2017. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 122(8):2046–2063. doi:10.1002/2016jg003725.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. 2019. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 12(3):1119–1137. doi:10.5194/gmd-12-1119-2019.
  • Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. 2018. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 123(3):1057–1071. doi:10.1002/2017jg004040.

Jiang, Lifen

  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
  • Hough M, Ma S, Huang Y, Zhou Y, Kim H-S, Lopez-Blanc E, Jiang L, Xia J, Tao F, Williams C, et al. 2023. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. . Global Change Biology. 29:2759–2775. doi:10.1111/gcb.16643.

Jicha, Terri

  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.

Johnston, Eric

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
  • Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
  • Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. 2020. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 15(2):e0223744. doi:10.1371/journal.pone.0223744.

Jones, Jennifer

  • Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.

Jones, M.W.

  • Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.

Jones, N.J.

  • Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.

Jovan, Sarah

  • Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. 2018. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 105(2):266–274. doi:10.1002/ajb2.1022.

Jung, Chang

  • Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. 2019. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 12(3):1119–1137. doi:10.5194/gmd-12-1119-2019.

Juul, S

  • Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.

Kalluri, U.

  • Seethepalli A, Ottley C, Childs J, Cope K, Fine A, Lagergren J, Kalluri U, Iversen CM, York L. 2024. Divide and conquer: Using RhizoVision Explorer to aggregate data from multiple root scans using image concatenation and statistical methods. New Phytologist . 244:5, 2101–2108. doi:10.1111/nph.20151.

Kane, Evan

  • McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. 2018. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 25(1):93–107. doi:10.1111/gcb.14465.
  • Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. 2017. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154:247–259. doi:10.1016/j.atmosenv.2017.01.049.

Kauserud, Håvard

  • Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. 2021. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 234(6):2032–2043. doi:10.1111/nph.17755.

Keller, Jason

  • Barney M, Hopple AM, Gregory L, Keller JK, Bridgham SD. 2024. Anaerobic oxidation of methane mitigates net methane production and responds to long-term experimental warming in a northern bog. Soil Biology and Biochemistry. 190:109316. doi:10.1016/j.soilbio.2024.109316.
  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
  • Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
  • Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. 2021. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 603:127137. doi:10.1016/j.jhydrol.2021.127137.
  • Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
  • Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
  • Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK. 2015. Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?. Soil Biology and Biochemistry. 86:34–41. doi:10.1016/j.soilbio.2015.03.016.
  • Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2020jg005963.
  • Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. 2018. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 118:156–160. doi:10.1016/j.soilbio.2017.11.025.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.

Kennedy, Peter

  • Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. 2021. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 234(6):2032–2043. doi:10.1111/nph.17755.
  • Fernandez CW, Heckman K, Kolka RK, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 22(3):498–505. doi:10.1111/ele.13209.

Khasanova, Albina

  • Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.

Kiely, G.

  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.

Kilner, CL

  • Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
  • Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.

Kim, H-S

  • Hough M, Ma S, Huang Y, Zhou Y, Kim H-S, Lopez-Blanc E, Jiang L, Xia J, Tao F, Williams C, et al. 2023. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. . Global Change Biology. 29:2759–2775. doi:10.1111/gcb.16643.

King, Anthony

  • Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, et al. 2024. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. . Plant, Cell & Environment. 47(12):4886–4902. doi:10.1111/pce.15068.
  • Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. 2019. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 39(4):556–572. doi:10.1093/treephys/tpy140.
  • Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Villanueva R, Cruz M, McLennan DA, King AW, et al. 2023. Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures. Nature Communications. 14:4667. doi:10.1038/s41467-023-40248-3.

Kivlin, Stephanie

  • Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.

Klarenberg, I.J.

  • Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.

Klingeman, DM

  • Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
  • Roth S, Griffiths NA, Oleheiser KC, Carrell AA, Klingeman D, Seibert A, Chanton JP, Hanson PJ, Schadt CW. 2023. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. . mSystems . 8:00337–23. doi:10.1128/msystems.00337-23.

Klironomos, John

  • Fernandez CW, Heckman K, Kolka RK, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 22(3):498–505. doi:10.1111/ele.13209.

Kluber, L.

  • Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
  • Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. 2020. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 15(2):e0223744. doi:10.1371/journal.pone.0223744.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.

Kolka, Randall

  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
  • Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. 2021. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2022(1). doi:10.1111/oik.08584.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. 2020. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3). doi:10.1029/2020av000163.
  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
  • Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. 2021. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 234(6):2032–2043. doi:10.1111/nph.17755.
  • McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. 2018. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 25(1):93–107. doi:10.1111/gcb.14465.
  • Kolka RK, Pierce CE, Garrioch I, Behrens K, Toner BM. 2024. Review of the influence of climate change on the hydrologic cycling and gaseous fluxes of mercury in Boreal peatlands: Implications for restoration. Water. 16:1154. doi:10.3390/w16081154.
  • Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. 2017. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424(1-2):123–143. doi:10.1007/s11104-017-3231-z.
  • Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. 2016. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255–272. doi:10.1007/s10533-016-0230-8.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
  • Barreto C, Conceicão PH, de Lima E, Stievano L, Zeppelini D, Kolka RK, Hanson PJ, Lindo Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science . 11:1153683. doi:10.3389/fenvs.2023.1153683 .
  • Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. 2012. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 76(5):1911–1918. doi:10.2136/sssaj2012.0040.
  • McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. 2020. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 15(12):124066. doi:10.1088/1748-9326/abc4fb.
  • Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
  • Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
  • Fernandez CW, Heckman K, Kolka RK, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 22(3):498–505. doi:10.1111/ele.13209.
  • Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. 2017. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154:247–259. doi:10.1016/j.atmosenv.2017.01.049.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
  • Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. 2022. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 56(2):1433–1444. doi:10.1021/acs.est.1c04662.
  • Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.

Kolton, Max

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
  • Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
  • Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 83(17). doi:10.1128/aem.01174-17.
  • Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
  • Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 25(9):2993–3004. doi:10.1111/gcb.14715.
  • Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
  • Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.

Konstantinidis, K.T.

  • Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.

Kostka, Joel

  • Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
  • Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
  • Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.

mnspruce.ornl.gov

An official website of the U.S. Department of Energy and the USDA Forest Service

Looking for U.S. government information and services?
Visit USA.gov