Skip to main content
U.S. flag

An official website of the United States government

Publications by Author

Norby, Richard

  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD. A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology. 2010;150(3):497–498. doi:10.1016/j.agrformet.2009.11.020
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x

Northen, Trent

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Ntarlagiannis, Dimitrios

  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040

O'Hara, Keiran

  • 1. Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 2012;18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x

Ofiti, Nicholas

  • 1. Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 2021;28(3):883–898. doi:10.1111/gcb.15955

Oleheiser, Keith

  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Griffiths NA, Sebestyen SD, Oleheiser KC. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. Science of The Total Environment. 2019;697:134152. doi:10.1016/j.scitotenv.2019.134152

Ontl, Todd

  • 1. Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 2017;424(1-2):123–143. doi:10.1007/s11104-017-3231-z

Orr, Galya

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Palik, Brian

  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465
  • 1. McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 2020;15(12):124066. doi:10.1088/1748-9326/abc4fb

Panov, A.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Parmentier, F.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Parsekian, Andrew

  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040

Peichl, M.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Pelletier, Dale

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0
  • 1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 2019;25(9):2993–3004. doi:10.1111/gcb.14715
  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072

Persson, Maria

  • 1. Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 2021;3. doi:10.3389/ffgc.2020.601046

Petro, Caitlin

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Pett-Ridge, Jennifer

  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Pfeifer-Meister, Laurel

  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK. Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?. Soil Biology and Biochemistry. 2015;86:34–41. doi:10.1016/j.soilbio.2015.03.016
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z

Phillips, Jana

  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 2020;15(12):124066. doi:10.1088/1748-9326/abc4fb
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8

Pierce, Caroline

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

Potvin, Lynette

  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049

Purvine, Samuel

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Ricciuto, Daniel

  • 1. Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 2019;12(4):1601–1612. doi:10.5194/gmd-12-1601-2019
  • 1. Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 2015;12(21):6463–6477. doi:10.5194/bg-12-6463-2015
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 2017;122(8):2046–2063. doi:10.1002/2016jg003725
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Graham JD, Ricciuto DM, Glenn NF, Hanson PJ. Incorporating Microtopography in a Land Surface Model and Quantifying the Effect on the Carbon Cycle. Journal of Advances in Modeling Earth Systems. 2022;14(2). doi:10.1029/2021ms002721
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 2019;39(4):556–572. doi:10.1093/treephys/tpy140
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x

Rich, Virginia

  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011

Richardson, Andrew

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017

Riggs, Jeffery

  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8
  • 1. Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 2015;4(2):203–213. doi:10.5194/gi-4-203-2015
  • 1. Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 2011;17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. 2013. doi:10.1115/imece2012-86352
  • 1. Krassovski MB, Lyon GE, Riggs JS, Hanson PJ. Near-real-time environmental monitoring and large-volume data collection over slow communication links. Geoscientific Instrumentation, Methods and Data Systems. 2018;7(4):289–295. doi:10.5194/gi-7-289-2018

Rinne, J.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Rocca, Jennifer

  • 1. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments. 2013;(81). doi:10.3791/50961

Roman, D.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Romero‐Olivares, Adriana

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Rumpel, C.

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Saleska, Scott

  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011

Salmon, Verity

  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x

Sargsyan, Khachik

  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422

Saruta, Volodymyr

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Schadt, Christopher

  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 2014;119(4):661–675. doi:10.1002/2013jg002492
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17
  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14
  • 1. Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 2020;15(2):e0223744. doi:10.1371/journal.pone.0223744
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723

Schmidt, M.

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015
  • 1. Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 2021;28(3):883–898. doi:10.1111/gcb.15955

Schmutz, Jeremy

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0
  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier; 2016. pp. 167–187. doi:10.1016/bs.abr.2016.01.003

Schrumpf, Marion

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Sebestyen, Stephen

  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 2015;12(21):6463–6477. doi:10.5194/bg-12-6463-2015
  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2021;2022(1). doi:10.1111/oik.08584
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands. Ecosystems. 2021;25(1):44–60. doi:10.1007/s10021-021-00639-3
  • 1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 2017;122(5):1078–1097. doi:10.1002/2016jg003711
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Griffiths NA, Sebestyen SD. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland. Wetlands. 2016;36(6):1119–1130. doi:10.1007/s13157-016-0829-5
  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336
  • 1. Griffiths NA, Sebestyen SD, Oleheiser KC. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. Science of The Total Environment. 2019;697:134152. doi:10.1016/j.scitotenv.2019.134152
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723

Seyednasrollah, Bijan

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1

Shaw, Jonathan

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0
  • 1. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 2016;211(1):57–64. doi:10.1111/nph.13993
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier; 2016. pp. 167–187. doi:10.1016/bs.abr.2016.01.003
  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Shelley, Sarah

  • 1. Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2021;2022(1). doi:10.1111/oik.08584

Shi, Xiaoying

  • 1. Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 2015;12(21):6463–6477. doi:10.5194/bg-12-6463-2015
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163

Shi, Zheng

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Shi, Zheng

  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040

Shu, S.

  • 1. Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier; 2016. pp. 167–187. doi:10.1016/bs.abr.2016.01.003

Six, J.

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Slater, Lee

  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040

Smith, Robert

  • 1. Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 2018;105(2):266–274. doi:10.1002/ajb2.1022

Solly, Emily

  • 1. Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 2021;28(3):883–898. doi:10.1111/gcb.15955

Somoza, Mark

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Song, Xia

  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468

Sonnentag, O.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Spaete, Lucas

  • 1. Graham JD, Glenn NF, Spaete LP, Hanson PJ. Characterizing Peatland Microtopography Using Gradient and Microform-Based Approaches. Ecosystems. 2020;23(7):1464–1480. doi:10.1007/s10021-020-00481-z

Stacy, Mark

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040

Stams, Alfons

  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17

Steinweg, Jessica

  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14
  • 1. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments. 2013;(81). doi:10.3791/50961
  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14

Stelling, Jonathan

  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336
  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336

Stinziano, Joseph

  • 1. Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 2021;27(13):3079–3094. doi:10.1111/gcb.15620

Stover, Daniel

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Sundi, Nilutpal

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Taggart, Michael

  • 1. Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 2020;3(5):640–652. doi:10.1002/ppp3.10172

Tfaily, Malak

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011
  • 1. Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 2014;119(4):661–675. doi:10.1002/2013jg002492
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 2018;123(2):479–494. doi:10.1002/2017jg004007

Thomas, Warren

  • 1. Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 2011;17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x
  • 1. Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. 2013. doi:10.1115/imece2012-86352

Thornton, P.

  • 1. Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 2015;12(21):6463–6477. doi:10.5194/bg-12-6463-2015
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468

Thorp, Nathan

  • 1. Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14(9):2481–2494. doi:10.5194/bg-14-2481-2017

Timm, Collin

  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458

Tipping, E.

  • 1. Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 2011;108(1-3):91–107. doi:10.1007/s10533-011-9575-1

Todd, Donald

  • 1. Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 2011;17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x
  • 1. Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. 2013. doi:10.1115/imece2012-86352

Toner, Brandy

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

Torn, M.

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Tringe, Susannah

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Tuittila, E.-S

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Turetsky, Merritt

  • 1. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 2016;211(1):57–64. doi:10.1111/nph.13993
  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465

Tuskan, Gerald

  • 1. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 2014;7(2):260–262. doi:10.4161/psb.18802
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458

Ueyama, M.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Vander Stel, Holly

  • 1. Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 2020;117(30):17627–17634. doi:10.1073/pnas.2003361117
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x

Veličković, Dušan

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Vesala, T.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Vestin, P.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Visser, Ate

  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511

Walker, Anthony

  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 2017;122(5):1078–1097. doi:10.1002/2016jg003711
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Hanson PJ, Walker AP. Advancing global change biology through experimental manipulations: Where have we been and where might we go?. Global Change Biology. 2019;26(1):287–299. doi:10.1111/gcb.14894

Walker, Ashley

  • 1. Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 2012;18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x

Wallenstein, Matthew

  • 1. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments. 2013;(81). doi:10.3791/50961

Wang, Gangsheng

  • 1. Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 2019;12(4):1601–1612. doi:10.5194/gmd-12-1601-2019

Wang, Yihui

  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468

Ward, Eric

  • 1. Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 2021;27(13):3079–3094. doi:10.1111/gcb.15620
  • 1. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2019;2. doi:10.3389/ffgc.2019.00054
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 2021;27(9):1820–1835. doi:10.1111/gcb.15543

Warren, Jeffrey

  • 1. Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 2021;27(13):3079–3094. doi:10.1111/gcb.15620
  • 1. Norby RJ, Childs J, Hanson PJ, Warren JM. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution. 2019;9(22):12571–12585. doi:10.1002/ece3.5722
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 2011;17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x
  • 1. Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 2021;3. doi:10.3389/ffgc.2020.601046
  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2019;2. doi:10.3389/ffgc.2019.00054
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 2019;39(4):556–572. doi:10.1093/treephys/tpy140
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 2021;27(9):1820–1835. doi:10.1111/gcb.15543
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 2015;116(5):821–832. doi:10.1093/aob/mcv115

Warren, Melissa

  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17

Wasik, Jill

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

mnspruce.ornl.gov

An official website of the U.S. Department of Energy and the USDA Forest Service

Looking for U.S. government information and services?
Visit USA.gov