Ofiti NOE, Schmidt MWI, Abiven S, Hanson PJ, Iversen CM, Wilson RM, Kostka JE, Wiesenberg GLB, Malhotra A. 2023. Climate warming and elevated CO2 alter peatland soil carbon sources and stability. Nature Communications . 14:7533. doi:10.1038/s41467-023-43410-z.
Publications by Author
Abs, Elsa
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Al-Shayeb, B
-
Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.
Aldeguer Riquelme, B.
-
Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
Alekseychik, P.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Allen, Michael
-
Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
Allen, Samantha
-
Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. 2020. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 15(2):e0223744. doi:10.1371/journal.pone.0223744.
Altermatt, M
-
Ofiti NOE, Altermatt M, Petibon F, Warren JM, Malhotra A, Hanson PJ, Wiesenberg GLB. 2023. Warming and elevated CO2 induced shifts in carbon partitioning and lipid composition within an ombrotrophic bog plant community. Environmental and Experimental Botany . 206:105182. doi:10.1016/j.envexpbot.2022.105182.
Amthor, Jeffrey
-
Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD. 2010. A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology. 150(3):497–498. doi:10.1016/j.agrformet.2009.11.020.
Anderton, Christopher
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Aubrecht, Donald
-
Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 14(4):861–883. doi:10.5194/bg-14-861-2017.
-
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560(7718):368–371. doi:10.1038/s41586-018-0399-1.
Aurela, M.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Banfield, J
-
Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.
Barbier, Charlotte
-
Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. 2013. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. doi:10.1115/imece2012-86352.
-
Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 14(4):861–883. doi:10.5194/bg-14-861-2017.
Barney, M
-
Barney M, Hopple AM, Gregory L, Keller JK, Bridgham SD. 2024. Anaerobic oxidation of methane mitigates net methane production and responds to long-term experimental warming in a northern bog. Soil Biology and Biochemistry. 190:109316. doi:10.1016/j.soilbio.2024.109316.
Barreto, Carlos
-
Barreto C, Conceicão PH, de Lima E, Stievano L, Zeppelini D, Kolka RK, Hanson PJ, Lindo Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science . 11:1153683. doi:10.3389/fenvs.2023.1153683 .
Basler, David
-
Richardson AD, Novick K, Basler DD, Phillips JR, Krassovski MB, Warren JM, Sebestyen SD, Hanson PJ. 2024. Experimental whole‐ecosystem warming enables novel estimation of snow cover and depth sensitivities to temperature, and quantification of the snow‐albedo feedback effect. Journal of Geophysical Research – Biogeosciences . 129:2023JG007833. doi:10.1029/2023JG007833.
-
Richardson AD, Schadel C, Westergaard-Nielsen A, Novick K, Basler DD, Phillips JR, Krassovski MB, Warren JM, Sebestyen SD, Hanson PJ. 2024. Experimental whole-ecosystem warming enables novel estimation of snow cover and depth sensitivities to temperature, and quantification of the snow-albedo feedback effect. JGR Biogeosciences. 129(3):1–19. doi:10.1029/2023JG007833.
Baxter, T
-
Norby RJ, Živković T, Weston DJ, Baxter T. 2023. Shading contributes to Sphagnum decline in response to warming. Ecology and Evolution . 13:10542. doi:10.1002/ece3.10542.
Baysinger, Mackenzie
-
Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. 2022. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 17(3):e0263994. doi:10.1371/journal.pone.0263994.
Beaulaurier, J
-
Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.
Behrens, K
-
Kolka RK, Pierce CE, Garrioch I, Behrens K, Toner BM. 2024. Review of the influence of climate change on the hydrologic cycling and gaseous fluxes of mercury in Boreal peatlands: Implications for restoration. Water. 16:1154. doi:10.3390/w16081154.
Belcher, Damen
-
Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. 2013. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. doi:10.1115/imece2012-86352.
Bell, Colin
-
Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. 2013. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments.(81). doi:10.3791/50961.
Bermudez, R
-
Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, et al. 2024. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. . Plant, Cell & Environment. 47(12):4886–4902. doi:10.1111/pce.15068.
Birkebak, J.M.
-
Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.
Bisht, G.
-
Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 12(21):6463–6477. doi:10.5194/bg-12-6463-2015.
Boden, T.
-
Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. 2015. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 4(2):203–213. doi:10.5194/gi-4-203-2015.
Bohannan, B.
-
Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
Bosman, Samantha
-
Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
Bowen, Benjamin
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Brehme, Thomas
-
Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. 2021. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 603:127137. doi:10.1016/j.jhydrol.2021.127137.
Brice, Deanne
-
Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. 2017. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424(1-2):123–143. doi:10.1007/s11104-017-3231-z.
-
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. 2021. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2022(1). doi:10.1111/oik.08584.
-
Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
Bridgham, Scott
-
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
-
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
-
Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK. 2015. Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?. Soil Biology and Biochemistry. 86:34–41. doi:10.1016/j.soilbio.2015.03.016.
-
Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. 2018. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 118:156–160. doi:10.1016/j.soilbio.2017.11.025.
-
Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
-
Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
-
Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2020jg005963.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. 2021. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 603:127137. doi:10.1016/j.jhydrol.2021.127137.
-
Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
-
Barney M, Hopple AM, Gregory L, Keller JK, Bridgham SD. 2024. Anaerobic oxidation of methane mitigates net methane production and responds to long-term experimental warming in a northern bog. Soil Biology and Biochemistry. 190:109316. doi:10.1016/j.soilbio.2024.109316.
Cabugao, Kristine
-
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
Campion, Christina
-
Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. 2012. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x.
Carper, Dana
-
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Carrell, Alyssa
-
Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. 2016. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier. pp. 167–187.
-
Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 25(9):2993–3004. doi:10.1111/gcb.14715.
-
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Carrell, Alyssa
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
-
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
-
Roth S, Griffiths NA, Oleheiser KC, Carrell AA, Klingeman D, Seibert A, Chanton JP, Hanson PJ, Schadt CW. 2023. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. . mSystems . 8:00337–23. doi:10.1128/msystems.00337-23.
-
DeWitt K, Carrell AA, Rocca JD, Votzke S, Yammine A, Peralta A, Weston DJ, Pelletier DA, Gilbert J. 2025. Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community. . mSphere.
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.
-
Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
Carter, Kelsey
-
Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. 2017. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 122(5):1078–1097. doi:10.1002/2016jg003711.
-
Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. 2021. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 3. doi:10.3389/ffgc.2020.601046.
Chabbi, A.
-
Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 1(2):575–582. doi:10.5194/soil-1-575-2015.
Chamberlain, P.
-
Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. 2011. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 108(1-3):91–107. doi:10.1007/s10533-011-9575-1.
Chanton, Jeffrey
-
Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119(4):661–675. doi:10.1002/2013jg002492.
-
Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3518–3530. doi:10.1128/aem.00205-14.
-
Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3531–3540. doi:10.1128/aem.00206-14.
-
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
-
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
-
Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. 2018. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 123(2):479–494. doi:10.1002/2017jg004007.
-
Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. 2018. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 118:156–160. doi:10.1016/j.soilbio.2017.11.025.
-
Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
-
Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. 2020. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3). doi:10.1029/2020av000163.
-
Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 11(1). doi:10.1038/s41467-020-16311-8.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
-
Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. 2022. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 17(3):e0263994. doi:10.1371/journal.pone.0263994.
-
Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. 2022. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 19(8):2245–2262. doi:10.5194/bg-19-2245-2022.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
-
Ma S, Jiang L, Wilson RM, Chanton JP, Niu S, Iversen CM, Malhotra A, Jiang J, Huang Y, Lu X, et al. 2023. Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland. Environmental Research Climate . 2:025003. doi:10.1088/2752-5295/acc67e.
-
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
-
Roth S, Griffiths NA, Oleheiser KC, Carrell AA, Klingeman D, Seibert A, Chanton JP, Hanson PJ, Schadt CW. 2023. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. . mSystems . 8:00337–23. doi:10.1128/msystems.00337-23.
-
Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
Chanton, Patrick
-
Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119(4):661–675. doi:10.1002/2013jg002492.
-
Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3518–3530. doi:10.1128/aem.00205-14.
-
Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3531–3540. doi:10.1128/aem.00206-14.
Chen, Janet
-
Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 14(9):2481–2494. doi:10.5194/bg-14-2481-2017.
Chen, Weile
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Childs, Joanne
-
Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. 2015. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 116(5):821–832. doi:10.1093/aob/mcv115.
-
Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. 2017. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 424(1-2):123–143. doi:10.1007/s11104-017-3231-z.
-
Norby RJ, Childs J, Hanson PJ, Warren JM. 2019. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution. 9(22):12571–12585. doi:10.1002/ece3.5722.
-
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
-
Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. 2021. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 27(9):1820–1835. doi:10.1111/gcb.15543.
-
Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist . 244:1333–1347. doi:10.1111/nph.19690.
-
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist. 242:1333–1347. doi:10.1111/nph.19690.
-
Seethepalli A, Ottley C, Childs J, Cope K, Fine A, Lagergren J, Kalluri U, Iversen CM, York L. 2024. Divide and conquer: Using RhizoVision Explorer to aggregate data from multiple root scans using image concatenation and statistical methods. New Phytologist . 244:5, 2101–2108. doi:10.1111/nph.20151.
Childs, Kenneth
-
Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. 2011. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x.
Chu, Rosalie
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Conceicão , Pedro
-
Barreto C, Conceicão PH, de Lima E, Stievano L, Zeppelini D, Kolka RK, Hanson PJ, Lindo Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science . 11:1153683. doi:10.3389/fenvs.2023.1153683 .
Cooper, William
-
Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 119(4):661–675. doi:10.1002/2013jg002492.
-
Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3518–3530. doi:10.1128/aem.00205-14.
-
Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3531–3540. doi:10.1128/aem.00206-14.
-
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
-
Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. 2018. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 123(2):479–494. doi:10.1002/2017jg004007.
Cope, K.R.
-
Seethepalli A, Ottley C, Childs J, Cope K, Fine A, Lagergren J, Kalluri U, Iversen CM, York L. 2024. Divide and conquer: Using RhizoVision Explorer to aggregate data from multiple root scans using image concatenation and statistical methods. New Phytologist . 244:5, 2101–2108. doi:10.1111/nph.20151.
Cordeiro, Amanda
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Cox, W.D.
-
Turetsky MR, Weston DJ, Cox W, Petro C, Shaw A. 2025. The challenging but unique eco-evolutionary aspects of Sphagnum moss. . New Phytologist. In press . doi:10.1111/nph.70233.
Crill, Patrick
-
Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 1(2):575–582. doi:10.5194/soil-1-575-2015.
-
Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. 2017. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 112:22–32. doi:10.1016/j.orggeochem.2017.06.011.
Cruz, M
-
Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Villanueva R, Cruz M, McLennan DA, King AW, et al. 2023. Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures. Nature Communications. 14:4667. doi:10.1038/s41467-023-40248-3.
-
Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, et al. 2024. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. . Plant, Cell & Environment. 47(12):4886–4902. doi:10.1111/pce.15068.
Curtinrich, Holly
-
Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. 2021. Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands. Ecosystems. 25(1):44–60. doi:10.1007/s10021-021-00639-3.
Cusack, Daniela
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Dai, X
-
Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.
de Lima, Estevam
-
Barreto C, Conceicão PH, de Lima E, Stievano L, Zeppelini D, Kolka RK, Hanson PJ, Lindo Z. 2023. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science . 11:1153683. doi:10.3389/fenvs.2023.1153683 .
De Witt , K
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
Defrenne, Camille
-
Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
-
Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist . 244:1333–1347. doi:10.1111/nph.19690.
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist. 242:1333–1347. doi:10.1111/nph.19690.
del Rio, T.
-
Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
Denison, E.R.
-
Denison E, Pound H, Gann E, Gilbert N, Weston DJ, Pelletier DA, Wilhelm S. 2025. Identification of shared viral sequences in peat moss metagenomes reveals elements of a possible Sphagnum core virome. . Environmental Microbiome. 20(1):1–6. doi:10.1186/s40793-025-00719-0.
Devos, N.
-
Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. 2016. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier. pp. 167–187.
DeWitt, K
-
DeWitt K, Carrell AA, Rocca JD, Votzke S, Yammine A, Peralta A, Weston DJ, Pelletier DA, Gilbert J. 2025. Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community. . mSphere.
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.
Dietterich, Lee
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Duchesneau, Katherine
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist . 244:1333–1347. doi:10.1111/nph.19690.
-
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, et al. 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. . Global Change Biology . 29:3159–76. doi:10.1111/gcb.16651.
-
Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
-
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore J, Childs J, Hanson PJ, Iversen CM, Kostka JE. 2024. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands. New Phytologist. 242:1333–1347. doi:10.1111/nph.19690.
Dusenge, Mirindi
-
Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. 2021. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 27(13):3079–3094. doi:10.1111/gcb.15620.
-
Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Villanueva R, Cruz M, McLennan DA, King AW, et al. 2023. Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures. Nature Communications. 14:4667. doi:10.1038/s41467-023-40248-3.
-
Dusenge M, Warren JM, Reich P, Ward EJ, Murphy B, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, et al. 2024. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. . Plant, Cell & Environment. 47(12):4886–4902. doi:10.1111/pce.15068.
Dusenge, Mirindi
-
Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. 2019. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2. doi:10.3389/ffgc.2019.00054.
Eckert, Diana
-
Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. 2021. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 3. doi:10.3389/ffgc.2020.601046.
Eder, Elizabeth
-
Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
Edwards, Nelson
-
Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ. 2012. Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology. 18(6):2008–2025. doi:10.1111/j.1365-2486.2011.02632.x.
El-Madany, T.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Elias, Dwayne
-
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. 2022. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology. 56(2):1433–1444. doi:10.1021/acs.est.1c04662.
Enterkine, J.
-
Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.
Esson, Kaitlin
-
Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3518–3530. doi:10.1128/aem.00205-14.
Euskirchen, E.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Falkowski, Michael
-
McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. 2018. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 25(1):93–107. doi:10.1111/gcb.14465.
Fernandez, Christopher
-
Fernandez CW, Heckman K, Kolka RK, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 22(3):498–505. doi:10.1111/ele.13209.
-
Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. 2020. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 3(5):640–652. doi:10.1002/ppp3.10172.
-
Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. 2021. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 234(6):2032–2043. doi:10.1111/nph.17755.
Feron, Sarah
-
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
Fine, A.K.
-
Seethepalli A, Ottley C, Childs J, Cope K, Fine A, Lagergren J, Kalluri U, Iversen CM, York L. 2024. Divide and conquer: Using RhizoVision Explorer to aggregate data from multiple root scans using image concatenation and statistical methods. New Phytologist . 244:5, 2101–2108. doi:10.1111/nph.20151.
Finzi, Adrien
-
Gill AL, Giasson M, Yu R, Finzi AC. 2017. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce‐dominated ombrotrophic bog. Global Change Biology. 23(12):5398–5411. doi:10.1111/gcb.13806.
-
Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
Flanagan, L.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Franco, André
-
Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. 2021. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 229(6):3058–3064. doi:10.1111/nph.17163.
Fricks, Barbara
-
Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. 2013. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments.(81). doi:10.3791/50961.
Fröberg, M.
-
Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. 2011. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 108(1-3):91–107. doi:10.1007/s10533-011-9575-1.
Furman, Olha
-
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. 2022. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology. 56(2):1433–1444. doi:10.1021/acs.est.1c04662.
Furze, Morgan
-
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 560(7718):368–371. doi:10.1038/s41586-018-0399-1.
-
Furze ME. 2018. Seasonal patterns of nonstructural carbohydrate reserves in four woody boreal species. The Journal of the Torrey Botanical Society. 145(4):332. doi:10.3159/torrey-d-18-00007.1.
Gaby, John
-
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 83(17). doi:10.1128/aem.01174-17.
Gann, E.R.
-
Denison E, Pound H, Gann E, Gilbert N, Weston DJ, Pelletier DA, Wilhelm S. 2025. Identification of shared viral sequences in peat moss metagenomes reveals elements of a possible Sphagnum core virome. . Environmental Microbiome. 20(1):1–6. doi:10.1186/s40793-025-00719-0.
Garrioch, I
-
Kolka RK, Pierce CE, Garrioch I, Behrens K, Toner BM. 2024. Review of the influence of climate change on the hydrologic cycling and gaseous fluxes of mercury in Boreal peatlands: Implications for restoration. Water. 16:1154. doi:10.3390/w16081154.
Giasson, Marc‐André
-
Gill AL, Giasson M, Yu R, Finzi AC. 2017. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce‐dominated ombrotrophic bog. Global Change Biology. 23(12):5398–5411. doi:10.1111/gcb.13806.
Gilbert, JP
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, De Witt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology 30. 30:17203. doi:10.1016/j.soilbio.2024.109316.
-
DeWitt K, Carrell AA, Rocca JD, Votzke S, Yammine A, Peralta A, Weston DJ, Pelletier DA, Gilbert J. 2025. Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community. . mSphere.
-
Kilner C, Carrell AA, Wieczynski D, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gilbert J. 2024. Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities. . Global Change Biology. doi:10.1111/gcb.17203.
Gilbert , N.E.
-
Denison E, Pound H, Gann E, Gilbert N, Weston DJ, Pelletier DA, Wilhelm S. 2025. Identification of shared viral sequences in peat moss metagenomes reveals elements of a possible Sphagnum core virome. . Environmental Microbiome. 20(1):1–6. doi:10.1186/s40793-025-00719-0.
Gill, Allison
-
Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. 2016. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 129(3):255–272. doi:10.1007/s10533-016-0230-8.
-
Gill AL, Giasson M, Yu R, Finzi AC. 2017. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce‐dominated ombrotrophic bog. Global Change Biology. 23(12):5398–5411. doi:10.1111/gcb.13806.
-
Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. 2018. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 139(2):155–177. doi:10.1007/s10533-018-0460-z.
Gionfriddo, Caitlin
-
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. 2022. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology. 56(2):1433–1444. doi:10.1021/acs.est.1c04662.
Glass, Jennifer
-
Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. 2016. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 211(1):57–64. doi:10.1111/nph.13993.
-
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 83(17). doi:10.1128/aem.01174-17.
-
Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 25(9):2993–3004. doi:10.1111/gcb.14715.
-
Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. 2022. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 13(1). doi:10.1128/mbio.03714-21.
Glenn, Nancy
-
Graham JD, Glenn NF, Spaete LP, Hanson PJ. 2020. Characterizing Peatland Microtopography Using Gradient and Microform-Based Approaches. Ecosystems. 23(7):1464–1480. doi:10.1007/s10021-020-00481-z.
-
Graham JD, Ricciuto DM, Glenn NF, Hanson PJ. 2022. Incorporating Microtopography in a Land Surface Model and Quantifying the Effect on the Carbon Cycle. Journal of Advances in Modeling Earth Systems. 14(2). doi:10.1029/2021ms002721.
-
Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.
Graham, Jake
-
Graham JD, Glenn NF, Spaete LP, Hanson PJ. 2020. Characterizing Peatland Microtopography Using Gradient and Microform-Based Approaches. Ecosystems. 23(7):1464–1480. doi:10.1007/s10021-020-00481-z.
-
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 117(30):17627–17634. doi:10.1073/pnas.2003361117.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Graham JD, Ricciuto DM, Glenn NF, Hanson PJ. 2022. Incorporating Microtopography in a Land Surface Model and Quantifying the Effect on the Carbon Cycle. Journal of Advances in Modeling Earth Systems. 14(2). doi:10.1029/2021ms002721.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
Graham, Jake
-
Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
Granath, G.
-
Živković T, Carrell AA, Granath G, Shaw A, Pelletier DA, Schadt CW, Klingeman D, Nilsson MB, Helbig M, Warshan D, et al. 2025. Host species–microbiome interactions contribute to Sphagnum moss growth acclimation to warming. Global Change Biology. 31(2)(e70066). doi:10.1111/gcb.70066.
Green, Mark
-
Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. 2021. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 35(10). doi:10.1002/hyp.14336.
-
Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. 2021. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 35(10). doi:10.1002/hyp.14336.
-
Duchesneau K, Aldeguer Riquelme B, Petro C, Makke G, Green MB, Tfaily MM, Wilson RM, Roth S, Johnston ER, Kluber LA, et al. 2025. Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter. Nature Communications. doi:doi.org/10.1101/2024.07.17.603906.
Green, Stefan
-
Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. 2014. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 80(11):3531–3540. doi:10.1128/aem.00206-14.
Gregory, L.L.
-
Barney M, Hopple AM, Gregory L, Keller JK, Bridgham SD. 2024. Anaerobic oxidation of methane mitigates net methane production and responds to long-term experimental warming in a northern bog. Soil Biology and Biochemistry. 190:109316. doi:10.1016/j.soilbio.2024.109316.
Gribaldo, S
-
Schoelmerich M, Ly L, West-Roberts J, Shi L-D, Shen C, Malvankar N, Taib N, Gribaldo S, Woodcroft B, Schadt CW, et al. 2024. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. . Nature Communications. doi:10.1038/s41467-024-49548-8.
Griffis, T.
-
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. 2022. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. doi:10.1038/s41558-022-01428-z.
Griffiths, Natalie
-
Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 12(21):6463–6477. doi:10.5194/bg-12-6463-2015.
-
Griffiths NA, Sebestyen SD. 2016. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland. Wetlands. 36(6):1119–1130. doi:10.1007/s13157-016-0829-5.
-
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.
-
Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. 2017. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 81(6):1668–1688. doi:10.2136/sssaj2016.12.0422.
-
Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. 2020. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 1(3). doi:10.1029/2020av000163.
-
Griffiths NA, Sebestyen SD, Oleheiser KC. 2019. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. Science of The Total Environment. 697:134152. doi:10.1016/j.scitotenv.2019.134152.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. 2020. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020:1–49. doi:10.5194/bg-2020-90.
-
Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. 2021. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 118(25). doi:10.1073/pnas.2004192118.
-
Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. 2021. Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands. Ecosystems. 25(1):44–60. doi:10.1007/s10021-021-00639-3.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. 2021. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2022(1). doi:10.1111/oik.08584.
-
Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. 2021. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 18(2):467–486. doi:10.5194/bg-18-467-2021.
-
Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. 2021. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 35(10). doi:10.1002/hyp.14336.
-
Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. 2021. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 603:127137. doi:10.1016/j.jhydrol.2021.127137.
-
Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. 2022. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. doi:10.1007/s10021-022-00744-x.
-
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. 2022. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology. 56(2):1433–1444. doi:10.1021/acs.est.1c04662.
-
Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. 2021. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 126(8). doi:10.1029/2019jg005468.
-
Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466(1-2):649–674. doi:10.1007/s11104-021-05065-x.
-
Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. 2021. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 35(10). doi:10.1002/hyp.14336.
-
Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11). doi:10.1029/2021jg006511.
-
Roth S, Griffiths NA, Oleheiser KC, Carrell AA, Klingeman D, Seibert A, Chanton JP, Hanson PJ, Schadt CW. 2023. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. . mSystems . 8:00337–23. doi:10.1128/msystems.00337-23.
-
Hanson PJ, Griffiths NA, Salmon VG, Birkebak J, Warren JM, Phillips JR, Guilliams M, Oleheiser KC, Jones M, Jones N, et al. 2025. Peatland plant community changes in annual production and composition through 8 years of warming manipulations under ambient and elevated CO2 atmospheres. JGR-Biogeosciences. 130.
Grimwood, Jane
-
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. 2022. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 234(6):2111–2125. doi:10.1111/nph.18072.
-
Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. 2021. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 16(4):1074–1085. doi:10.1038/s41396-021-01136-0.
Gu, Lianhong
-
Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. 2014. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 38(9):1737–1751. doi:10.1111/pce.12458.
-
Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 14(4):861–883. doi:10.5194/bg-14-861-2017.
-
Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. 2017. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 122(5):1078–1097. doi:10.1002/2016jg003711.
-
Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. 2019. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 12(4):1601–1612. doi:10.5194/gmd-12-1601-2019.
Guha, Anirban
-
Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. 2021. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 27(9):1820–1835. doi:10.1111/gcb.15543.
Guilderson, Thomas
-
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7(1). doi:10.1038/ncomms13723.